Preview

Oncohematology

Advanced search

Biological basis of immunomodulatory preparations using in treatment of multiple myeloma

Abstract

   Immunomodulatory preparations (IMP) — lenalidomide (СС-5013, Revlimid®) and pomlidomide (CC-4047, Actimid®) — a new class of the medical products which are thalidomide synthetic derivatives. In comparison with initial compound they possess higher therapeutic activity and the optimized profile of toxic complications. In this review modern data on IMP antitumor activity with reference to multiple myeloma therapy are presented. Results of clinical study of lenalidomide in first-line therapy, in relapsed/refractory multiple myeloma and as a maintenance therapy after transplantation are shown.

About the Author

S. V. Semochkin
Federal Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Moscow



References

1. Андреева Н. Е. Диагностика и лечение генерализованной плазмоцитомы (множественной миеломы) / Н. Е. Андреева Л. Г. Антипова //Тер арх. – 1977. – 49 (8): 76—85.

2. McKenna R. W., Kyle R. A., Kuehl W. M. et al. Plasma cell neoplasms. In: S. H. Swerdlow, E. Campo, N. L. Harris et al. (eds.) WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: IARC Press, 2008. p. 200—13.

3. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br J Haematol 2003; 121: 749—57.

4. Howe H. L., Wingo P. A., Thun M. J. et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Instr 2001; 93: 824—42.

5. Давыдов М. И. Статистика злокачественных новообразований в России и странах СНГ / М. И. Давыдов, Е. М. Аксель // Вестн. РОНЦ им. Н. Н. Блохина РАМН. – 2008. – 19 (2, прил. 1).

6. Boyle P., Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann Oncol 2005; 16: 481—8.

7. Gregory W. M., Richards M. A., Malpas J. S. Combination chemotherapy versus melphalan and prednisolone in the treatment of multiple myeloma: an overview of published trials. J Clin Oncol 1992; 10 (2): 334—42.

8. Бессмельцев С. С. Эффективность некотоpых пpогpамм полихимиотеpапии пpи лечении больных множественной миеломой / С. С. Бессмельцев, К. М. Абдулкадыpов, О. А. Pукавицын // Тер арх. – 1998. – 70 (7): 46—9.

9. Fermand J. P., Ravaud P., Chevret S. et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998; 92 (9): 3131—6.

10. Менделеева Л. П. Высокодозная химиотерапия с последующей аутотрансплантацией у пожилых больных с множественной миеломой / Л. П. Менделеева [и др.] // Клин геронтол. – 2007. – 13 (4): 20—4.

11. Newman C. G. The thalidomide syndrome: risks of exposure and spectrum of malformations. Clin Perinatol 1986; 13 (3): 555—73.

12. Therapontos C., Erskine L., Gardner E. R. et al. Thalidomide induces limb defects by preventing angiogenic out-growth during early limb formation. Proc Natl Acad Sci USA 2009; 106 (21): 8573—8.

13. Knobloch J., Schmitz I., GЪtz K. et al. Thalidomide induces limb anomalies by PTEN stabilization, Akt suppression, and stimulation of caspase-dependent cell death. Mol Cell Biol 2008; 28 (2): 529—38.

14. Teo S. K. Properties of thalidomide and its analogues: implications for anticancer therapy. AAPS J 2005; 7 (1): 14—9.

15. Moncada B., Baranda M. L., Gonzalez-Amaro R. et al. Thalidomide-effect on T-cell subsets as a possible mechanism of action. Int J Lepr Other Mycobact Dis 1985; 53 (2): 201—5.

16. Moreira A. L., Sampaio E. P., Zmuidzinas A. et al. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 1993; 177 (6): 1675—80.

17. Anargyrou K., Dimopoulos M. A., Sezer O., Terpos E. Novel anti-myeloma agents and angiogenesis. Leuk Lymph 2008; 49 (4): 677—89.

18. Breitkreutz I., Anderson K. C. Thalidomide in multiple myeloma — clinical trials and aspects of drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2008; 4 (7): 973—85.

19. Rajkumar S. V. Thalidomide therapy and deep venous thrombosis in multiple myeloma. Mayo Clin Proc 2005; 80 (12): 1549—51.

20. Lacy M. Q., Hayman S. R., Gertz M. A. et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol 2009; 27 (30): 5008—14.

21. Chauhan D., Singh A. V., Brahmandam M. et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009;16 (4): 309—23.

22. Dezorella N., Pevsner-Fischer M., Deutsch V. et al. Mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6. Exp Cell Res 2009; 315 (11): 1904—13.

23. Барышников А. Ю. Взаимоотношение опухоли и иммунной системы организма / А. Ю. Барышников // Практ онкол. – 2003. – 4 (3): 127—30.

24. Chaudhuri D., Suriano R., Mittelman A., Tiwari R. K. Targeting the immune system in cancer. Curr Pharm Biotechnol 2009; 10 (2): 166—84.

25. Kotla V., Goel S., Nischal S. et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol 2009; 2: 36.

26. Кадагидзе З. Р. Цитокины / З. Р. Кадагидзе // Практ онкол. – 2003. – 4 (3): 132—9.

27. Corral L. G., Haslett P. A., Muller G. W. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163 (1): 380—6.

28. Bazzoni F., Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med 1996; 334: 1717—25.

29. Carswell E. A., Old L. J., Kassel R. L. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666—70.

30. Bemelmans M. H., van Tits L. J., Buurman W. A. Tumor necrosis factor: function, release and clearance. Crit Rev Immunol 1996; 16: 1—11.

31. Hong D. S., Angelo L. S., Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007; 110 (9): 1911—28.

32. Хаитов Р. М. Иммунология / Р. М. Хаитов. – М.: Гэотар-медиа, 2006.

33. Breitkreutz I., Raab M. S., Vallet S. et al. Lenalidomide inhibits osteoclastogenesis, survival factorsand bone-remodeling markers in multiple myeloma. Leukemia 2008; 22 (10): 1925—32.

34. Bartlett J. B., Dredge K., Dalgleish A. G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004; 4: 314—22.

35. LeBlanc R., Hideshima T., Catley L. P. et al. Immunomodulatory drug costimulates T-cells via the B7-CD28 pathway. Blood 2004; 103 (5): 1787—90.

36. Wu L., Adams M., Carter T. et al. Lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin Cancer Res 2008; 14 (14): 4650—7.

37. Dredge K., Marriott J. B., Todryk S. M. et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol 2002; 168 (10): 4914—9.

38. Zhang L.-H., Adams M., Kosek J. et al. Lenalidomide inhibits multiple myeloma cell proliferation in vitro via its effect on expression of oncogenes and tumor suppressor genes. Blood (ASH Annual Meeting Abstracts) 2009; 114 (22). Abstr 2855.

39. Takaoka A., Tamura T., Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci 2008; 99 (3): 467—78.

40. Dror N., Alter-Koltunoff M., Azriel A. N. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Mol Immunol 2007; 44 (4): 338—46.

41. Topham N. J, Hewitt E. W. Natural killer cell cytotoxicity: how do they pull the trigger? Immunology 2009; 128 (1): 7—15.

42. Kiessling R., Klein E., Wigzell H. «Natural» killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5 (2): 112—7.

43. Lanier L. L., Phillips J. H., Hackett J. Jr. et al. Natural killer cells: definition of a cell type rather than a function. J Immunol 1986; 137 (9): 2735—9.

44. Vivier E., Nunes J. A., Vely F. Natural killer cell signaling pathways. Science 2004; 306 (5507): 1517—9.

45. Grzywacz B., Miller J. S., Verneris M. R. Use of natural killer cells as immunotherapy for leukaemia. Best Pract Res Clin Haematol 2008; 21 (3): 467—83.

46. Loza M. J., Zamai L., Azzoni L. et al. Expression of type 1 (interferon gamma) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood 2002; 99 (4): 1273—81.

47. Davies F. E., Raje N., Hideshima T. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98 (1): 210—6.

48. Hayashi T., Hideshima T., Akiyama M. et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005; 128 (2): 192—203.

49. Verhelle D., Corral L. G., Wong K. et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B-cells while expanding normal CD34+ progenitor cells. Cancer Res 2007; 67 (2): 746—55.

50. Hideshima T., Chauhan D., Shima Y. et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96 (9): 2943—5029.

51. Mitsiades N., Mitsiades C. S., Poulaki V. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99 (12): 4525—30.

52. Huston A., Roodman G. D. Role of the microenvironment in multiple myeloma bone disease. Future Oncol 2006; 2 (3): 371—8.

53. Mitsiades C. S., Mitsiades N. S., Richardson P. G. et al. Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J Cell Biochem 2007; 101 (4): 950—68.

54. Migkou M., Terpos E., Christoulas D. et al. Increased levels of Vascular Cell Adhesion Molecule-1 (VCAM-1) and Inter-Cellular Adhesion Molecule-1 (ICAM-1) correlate with advanced disease features and poor survival in newly diagnosed patients with multiple myeloma. Reduction Post-Bortezomib- and Lenalidomide-Based Regimens. Blood (ASH Annual Meeting Abstracts) 2009; 114 (22). Abstr 1824.

55. Cibeira M. T., Rozman M., Segarra M. et al. Bone marrow angiogenesis and angiogenic factors in multiple myeloma treated with novel agents. Cytokine 2008; 41 (3): 244—53.

56. D'Amato R. J., Loughnan M. S., Flynn E., Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91 (9): 4082—5.

57. Gupta D., Treon S. P., Shima Y. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15 (12): 1950—61.

58. Dredge K., Marriott J. B., Macdonald C. D. et al. Novel thalidomide analogues display antiangiogenic activity independently of immunomodulatory effects. Br J Cancer 2002; 87 (10): 1166—72.

59. Richardson P. G., Schlossman R. L., Weller E. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002; 100: 3063—7.

60. Richardson P. G., Blood E., Mitsiades C. S. et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006; 108: 3458—64.

61. Weber D. M., Chen C., Niesvizky R. et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133—42.

62. Dimopoulos M., Spencer A., Attal M. et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123—32.

63. Stadtmauer E. A., Weber D. M., Niesvizky R. et al. Lenalidomide in combination with dexamethasone at first relapse in comparison with its use as later salvage therapy in relapsed or refractory multiple myeloma. Eur J Haematol 2009; 82 (6): 426—32.

64. Reece D., Song K. W., Fu T. et al. Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood 2009; 114 (3): 522—5.

65. Richardson P. G., Weller E., Jagannath S. et al. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 2009; 27 (34): 5713—9.

66. Sonneveld P., Hajek R., Nagler A. et al. Combined pegylated liposomal doxorubicin and bortezomib is highly effective in patients with recurrent or refractory multiple myeloma who received prior thalidomide/lenalidomide therapy. Cancer 2008; 112 (7): 1529—37.

67. Gay F., Hayman S., Lacy M. Q. et al. Superiority of lenalidomide-dexamethasone versus thalidomide-dexamethasone as initial therapy for newly diagnosed multiple myeloma. Blood (ASH Annual Meeting Abstracts), 2009; 114 (22). Abstr 3884.

68. Zonder J. A., Crowley J., Hussein M. A. et al. Superiority of lenalidomide (Len) plus highdose dexamethasone (HD) compared to HD alone as treatment of newly-diagnosed multiple myeloma (NDMM): results of the randomized, double-blinded, placebocontrolled SWOG trial S0232. ASH Annual Meeting Abstracts 2007; 110 (11). Abstr 77.

69. Rajkumar S. V., Jacobus S., Callander N. S. et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 2009; doi: 10.1016/S1470-2045(09)70284-0

70. Musto P., D'Auria F., Pietrantuono G. et al. First-line treatment of multiple myeloma in elderly patients: the GIMEMA (Gruppo Italiano Malattie EMatologiche dell'Adulto) multiple myeloma working party perspective. Curr Drug Targets 2009; 10 (10): 906—22.

71. Attal M., Harousseau J. L., Marit G. et al. Lenalidomide after autologous transplantation for myeloma: First analysis of a prospective, randomized study of the Intergroupe Francophone Du Myelome (IFM 2005 02). Blood (ASH Annual Meeting Abstracts) 2009; 114 (22). Abstr 529.

72. McCarthy Ph. L., Owzar K., Stadtmauer E. A. et al. Phase III Intergroup Study of Lenalidomide (CC-5013) versus placebo maintenance therapy following single autologous stem cell transplant for multiple myeloma (CALGB 100104): Initial report of patient accrual and adverse events blood (ASH Annual Meeting Abstracts) 2009; 114 (22). Abstr 3416.

73. Palumbo A., Cavallo F., Yehuda D. B. et al. A prospective, randomized study of melphalan, prednisone, lenalidomide (MPR) versus Melphalan (200 mg/m2) and autologous transplantation (Mel200) in newly diagnosed myeloma patients: An interim analysis blood. ASH Annual Meeting Abstracts 2009; 114 (22). Abstr 350.


Review

For citations:


Semochkin S.V. Biological basis of immunomodulatory preparations using in treatment of multiple myeloma. Oncohematology. 2010;(1):21-31. (In Russ.)

Views: 9123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)