Microarrays: a new era in development of oncohematology
https://doi.org/10.17650/1818-8346-2008-0-1-2-6-12
Abstract
Introduction of the immunophenotyping in 70-ties and 80-ties of the past century has led to significant revision of conception of hematological malignancies. A new era in developement of medicine and oncology in particular is related to functional genomics. This field of molecular biology attempts to make use of the vast wealth of data produced by genomic projects for studying gene functions and interactions. Functional genomics focus on the dynamic aspects such as gene transcription, mRNA translation, and protein-protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structure. Several genomic technologies have been developed to study gene expression. Gene expression profiling on DNA microarrays has been particularly useful in analyzing expression of thousands genes in parallel. Modern microarrays contain comprehensive probe sets which are able to measure the majority of genes encoded in human genome. Here we focus on microarray technology, discuss its clinical applications and briefly review some results obtained by this method in researches of hematological malignancies.
About the Authors
Ye. A. NikitinRussian Federation
A. B. Sudarikov
Russian Federation
A. V. Baranova
Russian Federation
References
1. Hanahan D., Weinberg R.A. The hallmarks of cancer.Cell 2000 Jan 7;100(1):57—70.
2. Shaffer A.L., Rosenwald A., Hurt E.M. et al. Signatures of the immune response. Immunity 2001 Sep; 15(3):375—85.
3. Blanchard A.P., Kaiser A.J. and Hood L.E. High-density oligonucleotide arrays. Biosens Bioelectron 1996;11:687.
4. The Microarray Home Page. http://cmgm.stanford.edu/pbrown/aaray.html.
5. Johnston M. Array of hope for understanding gene regulation. Current Biol 1998;8:171—4.
6. Fodor S.P.A., Rava R., Huang X.C. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 1991;251:767—73.
7. McGall G., Labadie J., Brock P. et al. Light-directed synthesis of high-density oligonucleotida arrays using semiconductor photoresist. Proc Natl Acad Sci USA 1996;93:13555—60.
8. Cheng J., Sheldon S.L., Wu L. et.al. Preparation and hybridization analysis of DNA/RNA from E.coli on microfabricated biolelctronic chips. Nat Biotechnol 1998;16:541—6.
9. Guschin D., Yersov G., Zaslavsky A. et al. Manual manufacturing of oligonucleotide, cDNA, and protei microchips. Anal Biochem 1997;250:203—11.
10. Fulton R.J. McDade R.L., Smith P.L. et.al. Advanced multiplexed analysis with FlowMetrix system. Clin Chem 1997;43:1749—56.
11. Chandler V.S., Denton D., Pempsell P. Biomolecular multiplexing of up to 512 assays on a new solid-state 4 color flow analyzer. Cytometry 1998;(9):40.
12. Michael K.L., Taylor L.C., Shultz S.L., Walt D.R. Randomly ordered addressable high-density optical sensor arrays. Anal Chem 1998;70:1242—8.
13. Emmert-Buck M.R., Bonner R.F., Smith P.D., et.al. Laser capture microdissection. Science 1996;274:998—1001.
14. Duggan D.J., Bittner M., Chen Y. et al. Expression profiling using cDNA microarrays. Nature Genet 1999;21:10—4.
15. Lockhart D.J., Dong H., Byrne M.C. et al. Expression monitoring by hybridizaton to high-density oligonucleotide array. Nat Biotechnol 1996;14:1675—80.
16. Thiel A.J., Frutos A.G., Jordan C.E. et al. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 1997;69:4948—56.
17. Healy B.G., Matson R.S., Walt D.R. Fiberoptic DNA sensor array capable of detecting point mutation. Anal Biochem. 1997;251:270—9.
18. Stimpson D.I., Hoijer J.V., Hsieh W.T. et al. Real time detection of DNA hybridization and melting on oligonucleotide arrays using optical wave guides. Proc Natl Acad Sci USA. 1995;92:6379—83.
19. Eisen M.B., Spellman P.T., Brown P.O. et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998;95(25):14863—8.
20. Golub T.R., Slonim D.K., Tamayo P. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286(5439):531—7.
21. Rosenwald A., Wright G., Chan W.C., et al. Lymphoma/Leukemia Molecular Profiling Project. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346(25):1937—47.
22. Wiestner A., Rosenwald A., Barry T.S. et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003;101(12):4944—51.
23. Wright G., Tan B., Rosenwald A. et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 2003;100(17):9991—6.
24. Yeoh E.J., Ross M.E., Shurtleff S.A. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1(2):133—43.
25. Rosenwald A., Wright G., Wiestner A. et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003;3(2):185—97.
26. Ferrando A.A., Armstrong S.A., Neuberg D.S. et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003;102(1):262—8.
27. Rosenwald A., Alizadeh A.A., Widhopf G. et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001;194(11):1639—47.
28. Alizadeh A.A., Eisen M.B., Davis R.E. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403(6769):503—11.
29. Shipp M.A., Ross K.N., Tamayo P. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002;8(1):68—74.
30. Zhan F., Tian E., Bumm K. et al. Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage Bcell development. Blood 2003;101(3):1128—40.
31. Zhan F., Hardin J., Kordsmeier B. et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002;99(5):1745—57.
32. Rosenwald A., Wright G., Leroy K. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003;198(6):851—62.
Review
For citations:
Nikitin Ye.A., Sudarikov A.B., Baranova A.V. Microarrays: a new era in development of oncohematology. Oncohematology. 2008;(1-2):6-12. (In Russ.) https://doi.org/10.17650/1818-8346-2008-0-1-2-6-12