Preview

Онкогематология

Расширенный поиск

Мезенхимальные стволовые клетки (МСК) в клеточной терапии

https://doi.org/10.17650/1818-8346-2007-0-1-4-16

Об авторе

Е. Б. Владимирская

Израиль


Список литературы

1. Фриденштейн А.Я., Чайлахян Р.К., Лалыкина К.С. О фибробластоподобных клетках в культурах кроветворных тканей морских свинок. Цитология 1970;12:1147—55.

2. Friedenstein A.J., Deriglasova U.F., Kulagina N.N. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974;2(2):83—92.

3. Owen M., Fridenstain A. Stromal stem cells, marrow-derived osteogenic progenitors. Ciba Found Symp 1988;136:42—60.

4. Minguell J.J. Mesenchymal stem cells. Exp Biol Med 2001;226:507—20.

5. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71—4.

6. Caplan A.I. The mesengenic process. Clin Plast Surg 1994;21:429—35.

7. Conget P.A., Minguell J.J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181:67—73.

8. Galotto M., Berisso G., Delfino L. et al. Stromal domage as a consequence of high dose chemo/radiotherapy in bone marrow transplant recepients. Exp Hematol 1999;27:1460—6.

9. Simmons P., Przepiorka E., Thomas E., Torok-Storb B. Host origin of marrow stromal cells following allogenic bone marrow transplantation. Nature 1987;328:429—32.

10. Pereira R.F., O'Hara M.D., Laptev A.V. et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 1998;95:1142—7.

11. Horwitz E.M., Prockop D.J., Fitzpatrick L. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309—13.

12. Almeida-Porada G., Porada C.D., Tran N., Zanjani E.D. Cotransplantation of human stro mal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000;95:3620—7.

13. Noort W., Kruisselbrink A., de Paus R. et al. Co-transplantation of MSC and UCB CD34+ cells results in enhanced hemopoietic engrafment. Exp Hematol 2002;30:870—8.

14. Devine S., Bartholomew A., Mahmud N. et al. Mesenchymal stem cells are capable of homing to the bone marrow of nonhuman primates following systemic infusion. Exp Hematol 2001;29:244—55.

15. El-Badri N., Wang B., Cerry A., Good R. Osteoblasts promote engrafment of allogenic hematopoietic stem cells. Exp Hematol 1998;26:110—6.

16. Novelli E., Buyner D., Chopra R. Human MSC can enhance human CD34+ cell repopulation of NOD/SCID mice. Blood 1998;92:117 a.

17. Lazarus H.M., Haynesworth S.E., Gerson S.L. et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells), implications for therapeutic use. Bone Marrow Transplant 1995;16:557—64.

18. Koc O.N., Peters C., Aubourg P. et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999;27:1675—81.

19. Gerson S.L. Mesenchymal stem cells, no longer second class marrow citizens. Nat Med 1999;5:262—4.

20. Fibbe W., Noort W. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann N Y Acad Sci 2003;996:235—44.

21. Pozzi S., Lizini D., Podesta M. et al. Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Exp Hematol 2006;34:934—42.

22. Lazarus H.M., Koc O.N., Devine S.M. et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005;11:389—98.

23. Bennett J.H., Joyner C.J., Triffitt J.T. et al. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991;99:131—9.

24. Beresford J.N., Bennett J.H., Devlin C. et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992;102:341—51.

25. Weiss L. Haemopoiesis in mammalian bone marrow. Ciba Found Symp 1981;84:5—21.

26. Bianco P., Riminucci M. The bone marrow stroma in vivo, ontogeny, structure, cellular composition and changes in disease. In: J.N. Beresford, M. Owen (eds). Marrow Stromal Cell Cultures. Cambridge, Cambridge University Press; 1998. p. 10—25.

27. Galotto M., Campanile G., Robino G. et al. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res 1994;9:1239—49.

28. Gentili C., Bianco P., Neri M. et al. Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells. J Cell Biol 1993;122:703—12.

29. Nuttall M.E., Patton A.J., Olivera D.L. et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype, implications for osteopenic disorders. J Bone Miner Res 1998;13:371—82.

30. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143—7.

31. Conget P., Minguel J.J. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 2000;28:382—90.

32. D'Ippolito G., Diabira S., Howard G.A. et al. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004;117:2971—81.

33. Gori F., Thomas T., Hicok K.C. et al. Differentiation of human marrow stromal precursor cells, bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 1999;14:1522—35.

34. Tontonoz P., Hu E., Spiegelman B.M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994;79:1147—56.

35. Owen M. Marrow stromal stem cells. J Cell Sci 1988;10:63—76.

36. Ailhaud G. Extracellular factors, signalling pathways and differentiation of adipose precursor cells. Curr Opin Cell Biol 1990;2:1043—9.

37. Ducy P., Zhang R., Geoffroy V. et al. Osf2/Cbfa1, a transcriptional activator of osteoblast differentiation. Cell 1997;89:743—54.

38. Bruder S.P., Jaiswal N., Haynesworth S.E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278—94.

39. Friedenstein A.J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976;4:267—74.

40. Stein G.S., Lian J.B. Molecular mechanism mediating proliferation/differentiation interrrelationships during progressive development of the osteoblast phenotype. Endocr Rev 1993;14:424—42.

41. Lou J., Xu F., Merkel K., Manske P. Gene therapy, adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo. J Orthop Res 1999;17:43—50.

42. Young R.G., Butler D.L., Weber W. et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Ortho Res 1998;16:406—13.

43. Majumdar M.K., Thiede M.A., Mosca J.D. et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998;176:57—66.

44. Mbalaviele G., Jaiwal N., Meng A. et al. Human mesenchymal stem cells promote human osteoclast differentiation from CD34+ bone marrow hematopoietic progenitors. Endocrinology 1999;140:3736—43.

45. Cheng L., Qasba P., Vanguri P., Thiede M.A. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 2000;184:58—69.

46. Bianco P., Riminucci M., Gronthos S., Robey P. Bone marrow stromal stem cells, nature, biology, and potential applications. Stem Cells 2001;19:180—92.

47. Goshima J., Goldberg V.M., Caplan A.I. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop 1991;269:274—83.

48. Krebsbach P.H., Kuznetsov S.A., Satomura K. et al. Bone formation in vivo, comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 1997;63:1059—69.

49. Kadiyala S., Young R.G., Thiede M.A. et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 1997;6:125—34.

50. Bruder S.P., Kraus K.H., Goldberg V.M. et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80:985—96.

51. Gazit D., Turgeman G., Kelley P. et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone, a novel cell-mediated gene therapy. J Gene Med 1999;1:121—33.

52. Krebsbach P.H., Mankani M.H., Satomura K. et al. Repair of craniotomy defects using bone marrow stromal cells. Transplantation 1998;66:1272—8.

53. Kon E., Muraglia A., Corsi A. et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49:328—37.

54. Barry F.P. Mesenchymal stem cell therapy in joint disease. Novartis Found Symp 2005;249:86—96.

55. Horwitz E.M., Gordon P.L., Koo W.K. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta, Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002;99:8932—7.

56. Wakitani S., Saito T., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stromal cells exposed to 5-azacytidine. Muscle Nerve 1995;18:1417—26.

57. Reyes M., Verfaillie C.M. Skeletal, smooth and cardiac muscle differentiation from single adult marrow derived mesodermal progenitor cells. Blood 1999;94:586a.

58. Dominov J.A., Dunn J.J., Boone Miller J. Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J Cell Biol 1998;142:537—44.

59. Williams J.T., Southerland S.S., Souza J. et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999;65:22—6.

60. Galmiche M.C., Koteliansky V.E., Briere J. et al. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 1993;82:66—76.

61. Kopen G.C., Prockop D.J., Phinney D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999;96:10711—6.

62. Reyes M., Verfaillie C.M. Turning marrow into brain, Generation of glial and neuronal cells from adult bone marrow mesenchymal stem cells. Blood 1999;94(10 Suppl 1):377a.

63. Hermann A., Gastl R., Liebau S. et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 2004;117:4411—22.

64. TalОns-Visconti R., Bonora A., Jover R. et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells . World J Gastroenterol 2006;12:5834—45.

65. Seo M.J., Suh S.Y., Bae Y.C., Jung J.S.Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005;328:258—64.

66. Luk J.M., Wang P.P., Lee C.K. et al. Hepatic potential of bone marrow stromal cells, development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods 2005;20(305):39—47.

67. Couri C., Foss M., Voltarelli C. Secondary prevention of type 1 diabetes mellitus, stopping immune destruction and promoting β-cell regeneration. Braz J Med Biol Res 2006;39:1271—80.

68. Moriscot Ch., deFarapont F., Richard V.-J. et al. Human bone marrow MSC can express insulin and key transcription factors of the endocrine pancreas development pathway upon genetic and/or microenviromental manipulation in vitro. Stem Cells 2005;23:594—604.

69. Chen L.B., Jiang X.B., Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 2004;10:3016—20.

70. Schwarz E.J., Alexander G.M., Prockop D.J. et al. Multipotential marrow stromal cells transduced to produce L-DOPA, engraftment in a rat model of Parkinson disease. Hum Gene Ther 1999;10:2539—49.

71. Makino S., Fukuda K., Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697—705.

72. Beltrami A.P., Urbanek K., Kajstura J. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750—7.

73. Muller P., Beltrami A.P., Cesselli D. et al. Myocardial regeneration by endogenous adult progenitor cells. J Mol Cell Cardiol 2005;39:377—87.

74. Urbanek K., Torella D., Sheikh F. et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 2005;102:8692—7.

75. Wang J.S., Shum-Tim D., Galipeau J. et al. Marrow stromal cells for cellular cardiomyoplasty, feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000;120:999—1005.

76. Siminiak T., Kurpisz M. Myocardial replacement therapy. Circulation 2003;108:1167—71.

77. Wulf G.G., Jackson K.A., Goodell M.A. Somatic stem cell plasticity, current evidence and emerging concepts. Exp Hematol 2001;29:1361—70.

78. Minguell J., Conget P., Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Braz. J Med Biol Res 2000;33:881—7.

79. Orlic D., Kajstura J., Chimenti S. et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701—5.

80. Minguell J., Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med 2006;231:39—49.

81. Gojo S., Gojo N., Takeda Y. et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003;288:51—9.

82. Davani S., Marandin A., Mersin N. et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 2003;108:253—8.

83. Silva G.V., Litovsky S., Assad J.A. et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150—6.

84. Kovacic J.C., Graham R.M. Stem-cell ther apy for myocardial diseases. Lancet 2004;363:1735—6.

85. Assmus B., Schachinger V., Teupe C. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002;106:3009—17.

86. Wollert K.C., Meyer G.P., Lotz J. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction, the BOOST randomised controlled clinical trial. Lancet 2004;364:141—8.

87. Chen S.L., Fang W.W., Ye F. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92—5.

88. Honma T., Honmou O., Iihoshi S. et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 2006;199:56—66.

89. Zhang H., Huang Z., Xu Y., Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol Res 2006;28:104—12.

90. Sugaya K., Alvarez A., Marutle A. et al. Stem cell strategies for Alzheimer's disease therapy. Panminerva Med 2006:48:87—96.

91. Tropel P., Platet N., Platel J.C. et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24(12):2868—76. [Epub 2006 Aug 10].

92. Rabb H. Paracrine and differentiation mechanisms underlying stem cell therapy for the damaged kidney. Am J Physiol Renal Physiol 2005;289:29—30.

93. Morigi M., Imberti B., Zoja C. et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004;15:1794—804.

94. Le Blanc K., Tammik C., Rosendahl K. et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890—6.

95. Le Blanc K., Rasmusson I., Gotherstrom C. et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 2004;60:307—15.

96. Bartholomew A., Sturgeon C., Siatskas M. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42—8.

97. Di Nicola M., Carlo-Stella C., Magni M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838—43.

98. Le Blanc K., Tammik L., Sundberg B. et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57:11—20.

99. Maitra B., Szekely E., Gjini K. et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004;33:597—604.

100. Angoulvant D., Clerc A., Benchalal S. et al. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology 2004;41:469—76.

101. Augello A., Tasso R., Negrini S.M. et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005;35:1482—90.

102. Jiang X., Zhang Y., Liu B. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005;105:4120—6.

103. Groh M.E., Maitra B., Szekely E., Koc O.N. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005;33:928—34.

104. Krampera M., Glennie S., Dyson J. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101:3722—9.

105. Krampera M., Cosmi L., Angeli R. et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006;24:386—98.

106. Spaggiari G.M.,Capobianco A., Becchetti S. et al. Mesenchymal stem cell-natural killer cell interactions, evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006;107:1484—90.

107. Beyth S., Borovsky Z., Mevorach D. et al. Human mesenchymal stem cells alter antigenpresenting cell maturation and induce T-cell unresponsiveness. Blood 2005;105:2214—9.

108. Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815—22.

109. Maccario R., Podesta M., Moretta A. et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005;90:516—25.

110. Rasmusson I., Ringden O., Sundberg B., Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003;76:1208—13.

111. Koc O.N., Gerson S.L., Cooper B.W. et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000;18:307—16.

112. Djouad F., Plence P., Tropel P. et al. Immunosuppressive effect of mesenchimal stem cells favors tumor growyh of allogenic animals. Blood 2003;102:3837—44.

113. Barda-Saad M., Rozenszajn L.A., Ashush H. et al. Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells. Exp Hematol 1999;27:834—44.

114. Shoham T., Parameswaran R., Shav-Tal Y. et al.The mesenchymal stroma negatively regulates B cell lymphopoiesis through the expression of activin A. Ann N Y Acad Sci 2003;996:245—60.

115. Le Blanc K., Ringden O. Mesenchymal stem cells, properties and role in clinical bone marrow transplantation. Curr Opin Immunol 2006;18:586—91.

116. Le Blanc K., Rusmusson I., Sundberg. B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439—40.

117. Corcione A., Benvenuto F., Ferretti E. et al. Human mesenchymal stem cells modulate B cell functions. Blood 2006;107:367—72.

118. Zappia E., Casazza S., Pedemonte E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing Tcell anergy. Blood 2005;106:1755—61.

119. Nathanson M. Bone matrix-directed chondrogenesis of muscle in vitro. Clin Orthop 1985;200:142—58.

120. Campagnoli C., Roberts S., Kumar S. et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver and bone marrow. Blood 2001;98:2396—402.

121. Loncar D. Ultrastructural analysis of differentiation of rat endoderm in vitro, Adipose vascular-stromal cells induce endoderm differentiation, which in turn induces differentiation of the vascular-stromal cells into chondrocytes. J Submicrosc Cytol Pathol 1992;24:509—19.

122. Park S.R, Oreffo R.O., Triffit J.T.Interconversion potential of cloned human marrow adipocytes in vitro. Bone 1999;24:549—54.

123. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235—42.

124. Gutierrez-Rodriguez M., ReyesMaldonado E., Mayani H. Characterization of the adherent cells developed in Dexter-type long-term cultures from human umbilical cord blood. Stem Cells 2000;18:46—52.

125. Lazarus H.M., Haynesworth S.E., Gerson S.L., Caplan A.I. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 1997;6:447—55.

126. Kuznetsov S.A., Mankani M.H., Gronthos S. et al.Circulating skeletal stem cells. J Cell Biol 2001;153:1133—40.

127. Fernandez M., Simon V., Herrera G. et al. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant 1997;20:265—71.

128. Владимирская Е.Б., Пурбуева Б.Б., Румянцев А.Г. Влияние мезенхимальных стволовых клеток костного мозга на пролиферацию гранулоцитарно-макрофагальных предшественников при культивировании in vitro. Вопр гематол онкол иммунопатол педиатр 2006;(5):1—6.

129. Wagner W., Wein F., Seckinger A. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2000;33:1402—16.

130. Panepucci R.A., Siufi J.L., Silva W.A. Jr. et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 2004;22:1263—78.

131. Sakaguchi Y., Sekiya I., Yagishita K., Muneta T. Comparison of human stem cells derived from various mesenchymal tissues, superiority of synovium as a cell source. Arthritis Rheum 2005;52:2521—9.

132. Lu L.L., Liu Y.J., Yang S.G. et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesissupportive function and other potentials. Haematologica 2006;91:1017—26.

133. Bianco P., Robey P. Marrow stromal stem cells: Nature, biology and potential applications. J Clin Invest 2000;105:1663—8.

134. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000;113:1161—6.

135. Gronthos S., Zannettino A.C., Hay S.J. et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003;116:1827—35.

136. Verfaillie C., Schwartz R., Reyes M., Jiang Y. Unexpected potential of adult stem cells. Ann NY Acad Sci 2003;996:231—4.

137. Herzog E., Chai Li., Krause S. Plasticity of marrow-derived stem cells. Blood 2003;102:3483—93.

138. Jiang Y., Vaessen B., Lenvik T. et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002;30:896—904.

139. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41—9.

140. Schwartz R.E., Reyes M., Koodie L. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocytelike cells. J Clin Invest 2002;109:1291—302.

141. Morrison S.J., Prowse K.R., Ho P., Weissman I.L. Telomerase activity in hematopoietic cells is associated with self renewal potential. Immunity 1996;5:207—16.

142. Bertani N., Malatesta P.,Volpi G. et al. Neurogenic potential of human mesenchymal stem cells revisited, analysis by immunostaining, time-lapse video and microarray. J Cell Sci 2005;118:3925—36.

143. Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364—70.

144. Pontius J.U., Wagner L., Schuler G.D. UniGene, a unified view of the transcriptome. In: The NCBI Handbook. Bethesda, National Center for Biotechnology Information; 2003.

145. Silva W. Jr., Covas D., Panepucci R. et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 2003;21:661—9.

146. Hardeman E.C., Chiu C.P., Minty A., Blau H.M. The pattern of actin expression in human fibroblast X mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. Cell 1986;47:123—30.

147. Terada N., Hamazaki T., Oka M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416:542—5.

148. Ying Q.L., Nichols J., Evans E.P., Smith AG. Changing potency by spontaneous fusion. Nature 2002;416:545—8.

149. Forbes S., Vig P., Poulsom R. et al. Adult stem cell plasticity, new pathways of tissue regeneration become visible. Clin Sci 2002;103:355—69.

150. Martin-Rendon E., Watt S.Exploitation of stem cell plasticity. Transfus Med 2003;13:325—49.

151. Verfaillie C., Pera M., Lansdorf P. Stem ctlls: hype and reality. Hematology 2002;369—91.

152. Ianus A., Holz G., Theise N., Hussain M. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003;11:843—50.

153. Daley G., Goodell M., Snyder E.Realistic prospects for stem cell therapeutics. Hematology Am Soc Hematol Eoluc Program 2003;:398—418.

154. Simmons P., Short B., Brouard N. The properties of prospectively isolated mesenchymal stem cells from man and mouse. FFCR 97th Annuel Meeting. Education book, 2006. p. 334—37.


Рецензия

Для цитирования:


Владимирская Е.Б. Мезенхимальные стволовые клетки (МСК) в клеточной терапии. Онкогематология. 2007;(1):4-16. https://doi.org/10.17650/1818-8346-2007-0-1-4-16

For citation:


Vladimirskaya E.B. Mesenchymal stem cells (MSCs) in cell therapy. Oncohematology. 2007;(1):4-16. (In Russ.) https://doi.org/10.17650/1818-8346-2007-0-1-4-16

Просмотров: 257


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)