Analysis of microsatellite aberrations and loss of heterozygosity in follicular lymphoma, diffuse large B-cell lymphoma, and high-grade B-cell lymphoma patients
https://doi.org/10.17650/1818-8346-2022-17-2-60-74
Abstract
Background. The study of genetic predictors of non-Hodgkin’s lymphomas prognosis is one of the most relevant areas of oncohematology. It is extremely interesting to search for integral markers that reflect the most important stages of tumor pathogenesis. DNA repair system plays one of the key roles in genomic instability. Aberrations of microsatellite repeats such as microsatellite instability (MSI), in particular elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is characteristic for mismatch repair system and loss of heterozygosity (LOH) is an integral feature of genomic instability.
Objective. Analysis of MSI, EMAST, LOH significance in follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and high-grade B-cell lymphoma (HGBL) patients.
Materials and methods. The study was performed by multiplex PCR and fragment analysis with diagnostic panels COrDIS Plus and COrDIS MSI in 85 FL patients, 32 DLBCL patients, and 37 HGBL patients.
Results. The frequency of LOH in the general FL group was 40/81 (49.4 %), MSI – 10/82 (12.2 %), EMAST – 15/81 (18.5 %). The frequency of LOH in the HGBL group was 21/31 (67.8 %), MSI – 11/37 (29.7 %), EMAST – 13/31 (41.9 %). The frequency of LOH in the DLBCL group was 18/29 (62.0 %), MSI – 5/32 (15.6 %), EMAST – 14/32 (43.8 %). When considering the morphological types of FL, it was noted that a higher frequency of genetic aberrations was characteristic of lymphomas with a more aggressive morphology (p <0.05). LOH identifies FL and HGBL patients with an unfavorable prognosis. The EMAST analysis allows identifying additional patients in the LOH+ cohort with early events and low EFS.
Conclusion. LOH and EMAST have a prognostic value for FL and HGBL. No associations of LOH and EMAST with the survival were observed in DLBCL. Changes in mononucleotide repeats in FL, DLBCL and HGBL did not correspond to the MSI-H characteristic of solid tumors. For this reason, the clinical consequences of MSI-H in solid neoplasms, in particular the efficacy of immune checkpoint inhibitors, in lymphomas cannot be expected to be replicated solely on the basis of microsatellite aberrations detection.
About the Authors
K. A. SychevskayaRussian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
A. E. Misyurina
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
E. E. Nikulina
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
N. V. Risinskaya
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
R. R. Abdurashidova
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
Z. T. Sarakaeva
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
A. U. Magomedova
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
A. B. Sudarikov
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
S. K. Kravchenko
Russian Federation
125167, Moscow, Novyy Zykovskiy Proezd, 4
References
1. Ionov Y., Peinado M.A., Malkhosyan S. et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993;363(6429):558–61. DOI:10.1038/363558a0.
2. Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138(6):2073–87.e3. DOI:10.1053/j.gastro.2009.12.064.
3. Ballhausen A., Przybilla M.J., Jendrusch M. et al. The shared frameshift mutation landscape of microsatelliteunstable cancers suggests immunoediting during tumor evolution. Nat Commun 2020;11(1):4740. DOI:10.1038/s41467-020-18514-5.
4. Gryfe R., Kim H., Hsieh E.T. et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000;342(2):69–77. DOI:10.1056/NEJM200001133420201.
5. Oliveira A.F., Bretes L., Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front Oncol 2019;9:396. DOI:10.3389/fonc.2019.00396.
6. Boland C.R., Thibodeau S.N., Hamilton S.R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58(22):5248–57.
7. Carethers J.M. Microsatellite instability pathway and EMAST in colorectal cancer. Curr Colorectal Cancer Rep 2017;13(1):73–80. DOI:10.1007/s11888-017-0352-y.
8. Carethers J.M., Koi M., Tseng-Rogenski S.S. EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes (Basel) 2015;6(2):185–205. DOI:10.3390/genes6020185.
9. Torshizi Esfahani A., Seyedna S.Y., Nazemalhosseini Mojarad E. et al. MSI-L/EMAST is a predictive biomarker for metastasis in colorectal cancer patients. J Cell Physiol 2019;234(8):13128–36. DOI:10.1002/jcp.27983.
10. Murthy S.K., DiFrancesco L.M., Ogilvie R.T., Demetrick D.J. Loss of heterozygosity associated with uniparental disomy in breast carcinoma. Mod Pathol 2002;15(12):1241–50. DOI:10.1097/01.MP.0000032535.62750.D1.
11. Heidenreich E., Novotny R., Kneidinger B. et al. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J 2003;22(9):2274–83. DOI:10.1093/emboj/cdg203.
12. Randerson J., Cawkwell L., Jack A. et al. Microsatellite instability in follicle centre cell lymphoma. Br J Haematol 1996;93(1):160–2. DOI:10.1046/j.1365-2141.1996.456994.x.
13. Gamberi B., Gaidano G., Parsa N. et al. Microsatellite instability is rare in B-cell non-Hodgkin’s lymphomas. Blood 1997;89(3):975–9.
14. Nagy M., Balázs M., Adám Z. et al. Genetic instability is associated with histological transformation of follicle center lymphoma. Leukemia 2000;14(12):2142–8. DOI:10.1038/sj.leu.2401978.
15. Miyashita K., Fujii K., Yamada Y. et al. Frequent microsatellite instability in non-Hodgkin lymphomas irresponsive to chemotherapy. Leuk Res 2008;32(8):1183–95. DOI:10.1016/j.leukres.2007.11.024.
16. Tian T., Li J., Xue T. et al. Microsatellite instability and its associations with the clinicopathologic characteristics of diffuse large B-cell lymphoma. Cancer Med 2020;9(7):2330–42. DOI:10.1002/cam4.2870.
17. Sidorova Yu.V., Sorokina T.V., Biderman B.V. et al. Determination of minimal residual disease in patients with B-cell chronic lymphocytic leukemia by patient-specific PCR. Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics 2011:12:22–4. (In Russ.).
18. Sidorova J.V., Biderman B.V., Nikulina E.E., Sudarikov A.B. A simple and efficient method for DNA extraction from skin and paraffin – embedded tissues applicable to T-cell clonality assays. Exp Dermatol 2012;21(1):57–60. DOI:10.1111/j.1600-0625.2011.01375.x.
19. Van Dongen J.J., Langerak A.W., Brüggemann M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED2 Concerted Action BMH4-CT98–3936. Leukemia 2003;17(12):2257–317. DOI:10.1038/sj.leu.2403202.
20. Smirnova S.Yu., Sidorova Yu.V., Ryzhikova N.V. et al. Evolution of tumor clones in adult acute ymphoblastic leukemia. Acta Naturae 2016;8:108–17. (In Russ.).
21. Fishel R., Kolodner R.D. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev 1995;5(3):382–95. DOI:10.1016/0959-437x(95)80055-7.
22. Miyaki M., Konishi M., Tanaka K. et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 1997;17(3):271–2. DOI:10.1038/ng1197-271.
23. Kane M.F., Loda M., Gaida G.M. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997;57(5):808–11.
24. Haugen A.C., Goel A., Yamada K. et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res 2008;68(20):8465–72. DOI:10.1158/0008-5472.CAN-08-0002.
25. Umar A., Boland C.R., Terdiman J.P. et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;96(4):261–8. DOI:10.1093/jnci/djh034.
26. Duval A., Rolland S., Compoint A. et al. Evolution of instability at coding and non-coding repeat sequences in human MSI-H colorectal cancers. Hum Mol Genet 2001;10(5):513–8. DOI:10.1093/hmg/10.5.513.
27. Paraskakis E., Sourvinos G., Passam F. et al. Microsatellite DNA instability and loss of heterozygosity in bronchial asthma. Eur Respir J 2003;22(6):951–5. DOI:10.1183/09031936.03.00010503.
28. Spandidos D.A., Ergazaki M., Arvanitis D., Kiaris H. Microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 1996;220(1):137–40. DOI:10.1006/bbrc.1996.0370.
29. Chizhikov V., Chikina S., Gasparian A. et al. Cancer-associated molecular alterations in bronchial epithelium of former Chernobyl cleanup workers in comparison with smokers and nonsmokers without ionizing radiation exposure. Eur J Cancer 2001;37(6):153. DOI:10.1016/s0959-8049(01)81050-9.
30. Vieira M.L., Santini L., Diniz A.L., Munhoz Cde F. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 2016;39(3):312–28. DOI:10.1590/16784685-GMB-2016-0027.
31. Wafa A., Moassass F., Liehr T. et al. A high complex karyotype involving eleven chromosomes including three novel chromosomal aberrations and monoallelic loss of TP53 in case of follicular lymphoma transformed into B-cell lymphoblastic leukemia. Mol Cytogenet 2016;9:91. DOI:10.1186/s13039-016-0300-6.
32. Cohen J.B., Ruppert A.S., Heerema N.A. et al. Complex karyotype is associated with aggressive disease and shortened progression-free survival in patients with newly diagnosed mantle cell lymphoma. Clin Lymphoma Myeloma Leuk 2015;15(5):278–85.e1. DOI:10.1016/j.clml.2014.12.012.
33. Tilly H., Rossi A., Stamatoullas A. et al. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 1994;84(4):1043–9.
34. Casulo C., Byrtek M., Dawson K.L. et al. Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: an analysis from the National LymphoCare Study. J Clin Oncol 2015;33(23):2516–22. DOI:10.1200/JCO.2014.59.7534.
35. Solal-Céligny P., Roy P., Colombat P. et al. Follicular lymphoma international prognostic index. Blood 2004;104(5):1258–65. DOI:10.1182/blood-2003-12-4434.
36. Federico M., Bellei M., Marcheselli L. et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol 2009;27(27):4555–62. DOI:10.1200/JCO.2008.21.3991.
37. Pastore A., Jurinovic V., Kridel R. et al. Integration of gene mutations in risk prognostication for patients receiving firstline immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 2015;16(9):1111–22. DOI:10.1016/S1470-2045(15)00169-2.
38. Bagova M.O., Magomedova A.U., Kravchenko S.K. et al. Pharmacoeconomic analysis of combined immunochemotherapy R-DA-EPOCH and R-MNHL-BFM-90 in patients with prognostically unfavorable diffuse large B-cell lymphoma in the multicenter clinical trial DLBCL-2015. Klinicheskaya onkogematologiya = Clinical Oncohematology 2021;14(3):321–32. (In Russ.)]. DOI:10.21320/2500-21392021-14-3-321-332.
39. Magomedova A.U., Sychevskaya K.N., Moiseeva T.N. et al. Interim results of a multicenter, randomized, controlled (comparative), open-label, prospective study evaluating the effectiveness of the R-DA-EPOCH-21, R-mNHLBFM-90 programs and autologous hematopoietic stem cell transplantation in untreated patients with diffuse large B-cell lymphoma with unfavorable prognosis – DLBCL-2015 protocol. Gematologiya i transfuziologiya = Hematology and Transfusiology 2020;65(S1):35. (In Russ.).
Review
For citations:
Sychevskaya K.A., Misyurina A.E., Nikulina E.E., Risinskaya N.V., Abdurashidova R.R., Sarakaeva Z.T., Magomedova A.U., Sudarikov A.B., Kravchenko S.K. Analysis of microsatellite aberrations and loss of heterozygosity in follicular lymphoma, diffuse large B-cell lymphoma, and high-grade B-cell lymphoma patients. Oncohematology. 2022;17(2):60-74. (In Russ.) https://doi.org/10.17650/1818-8346-2022-17-2-60-74