Молекулярно-генетические особенности развития Т-клеточных лимфом кожи на примере грибовидного микоза и синдрома Сезари
https://doi.org/10.17650/1818-8346-2022-17-1-65-74
Аннотация
Т-клеточные лимфомы кожи представляют собой гетерогенную группу Т-клеточных лимфопролиферативных заболеваний, поражающих кожу. Грибовидный микоз и синдром Сезари – наиболее изученные варианты Т-клеточных лимфом кожи. Обзор литературы включает последние опубликованные данные по развитию патологических процессов при грибовидном микозе и синдроме Сезари и диагностике этих заболеваний. Описаны особенности геномной нестабильности при Т-клеточных лимфомах кожи, рассмотрены существующие гипотезы происхождения данных заболеваний по результатам изучения репертуара Т-клеточного рецептора.
Ключевые слова
Об авторах
М. Б. ХаджиеваРоссия
Марьям Борисовна Хаджиева
117198 Москва, ул. Саморы Машела, 1,
107031 Москва, ул. Петровка, 25, стр. 2
Е. С. Захарова
Россия
117198 Москва, ул. Саморы Машела, 1
Е. В. Калинина
Россия
117198 Москва, ул. Саморы Машела, 1
Д. С. Абрамов
Россия
117198 Москва, ул. Саморы Машела, 1
А. Г. Румянцев
Россия
117198 Москва, ул. Саморы Машела, 1
С. С. Ларин
Россия
117198 Москва, ул. Саморы Машела, 1
Список литературы
1. Демина О.М., Акилов О.Е., Румянцев А.Г. Т-клеточные лимфомы кожи: современные данные патогенеза, клиники и терапии. Онкогематология 2018;3(13):25–38. DOI: 10.17650/1818-8346-2018-13-3-25-38.
2. Dobos G., Pohrt A., Ram-Wolff C. et al. Epidemiology of cutaneous T-Cell lymphomas: a systematic review and metaanalysis of 16,953 patients. Cancers (Basel) 2020;12(10):2921. DOI: 10.3390/cancers12102921.
3. Willemze R., Cerroni L., Kempf W. et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019;133(16):1703–14. DOI: 10.1182/blood-2018-11-881268.
4. Willemze R., Jaffe E.S., Burg G. et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005;105(10):3768–85. DOI: 10.1182/blood-2004-09-3502.
5. Wilson L.D., Hinds G.A., Yu J.B. Age, race, sex, stage, and incidence of cutaneous lymphoma. Clin Lymphoma Myeloma Leuk 2012;12(5):291–6. DOI: 10.1016/j.clml.2012.06.010.
6. Quaglino P., Fava P., Pileri A. et al. Phenotypical markers, molecular mutations, and immune microenvironment as targets for new treatments in patients with mycosis fungoides and/or Sézary syndrome. J Invest Dermatol 2021;141(3):484–95. DOI: 10.1016/j.jid.2020.07.026.
7. Wilcox R.A. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 2016;91(1):151–65. DOI: 10.1002/ajh.24233.
8. Ding X., Chen J., Kuai L. et al. CD4/CD8 dual-positive mycosis fungoides: a case report and literature review. Medicine (Baltimore) 2020;99(42):e22786. DOI: 10.1097/MD.0000000000022786.
9. Воронцова А.А., Карамова А.Э., Знаменская Л.Ф. Современные представления о патогенезе грибовидного микоза. Онкогематология 2018;13(3):39–46. DOI: 10.17650/1818-8346-201813-3-39-46.
10. Jawed S.I., Myskowski P.L., Horwitz S. et al. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers. J Am Acad Dermatol 2014;70(2):205.e1–16. DOI: 10.1016/j.jaad.2013.07.049.
11. Sarantopoulos G.P., Palla B., Said J. et al. Mimics of cutaneous lymphoma: report of the 2011 Society for Hematopathology/ European Association for Haematopathology workshop. Am J Clin Pathol 2013;139(4):536–51. DOI: 10.1309/AJCPX4BXTP2QBRKO.
12. Hodak E., Amitay-Laish I. Mycosis fungoides: a great imitator. Clin Dermatol 2019;37(3):255–67. DOI: 10.1016/j.clindermatol.2019.01.004.
13. Захарова Е.С., Казило Н.А., Стефанов Д.Н. и др. Генетические основы разнообразия репертуара иммуноглобулинов в приложении к диагностике клональности В-клеточных лимфоидных популяций. Генетика 2011;47(6):752–64.
14. Bergman R., Faclieru D., Sahar D. et al. Immunophenotyping and T-cell receptor gamma gene rearrangement analysis as an adjunct to the histopathologic diagnosis of mycosis fungoides. J Am Acad Dermatol 1998;39(4 Pt 1):554–9. DOI: 10.1016/s0190-9622(98)70003-9.
15. Spits H. Development of alphabeta T cells in the human thymus. Nat Rev Immunol 2002;2(10):760–72. DOI: 10.1038/nri913.
16. Van Dongen J.J., Langerak A.W., Brüggemann M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4CT98-3936. Leukemia 2003;17(12): 2257–317. DOI: 10.1038/sj.leu.2403202.
17. Langerak A.W., Groenen P.J., Brüggemann M. et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012;26(10):2159–71. DOI: 10.1038/leu.2012.246.
18. Захарова Е.С., Гнучев Н.В., Георгиев Г.П., Ларин С.С. Мониторинг минимальной остаточной болезни в перспективе лечения острых лимфобластных лейкозов у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2016;15(4):34–41. DOI: 10.20953/1726-1708-2016-4-34-41.
19. Blom B., Verschuren M.C., Heemskerk M.H. et al. TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood 1999;93(9):3033–43.
20. Sidorova Y.V., Chernova N.G., Ryzhikova N.V. et al. Clonal rearrangements and Malignant Clones in Peripheral T-cell Lymphoma. Acta Naturae 2015;7(3):116–25.
21. Brüggemann M., Kotrová M., Knecht H. et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 2019;33(9):2241–53. DOI: 10.1038/s41375-019-0496-7.
22. Knecht H., Reigl T., Kotrová M. et al. Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonalityNGS. Leukemia 2019;33(9):2254–65. DOI: 10.1038/s41375-019-0499-4.
23. Pérez C., Mondéjar R., García-Díaz N. et al. Advanced-stage mycosis fungoides: role of the signal transducer and activator of transcription 3, nuclear factor-κB and nuclear factor of activated T cells pathways. Br J Dermatol 2020;182(1):147–55. DOI: 10.1111/bjd.18098.
24. Park J., Yang J., Wenzel A.T. et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood 2017;130(12):1430–40. DOI: 10.1182/blood-2017-02-768234.
25. Kiessling M.K., Oberholzer P.A., Mondal C. et al. High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood 2011;117(8):2433–40. DOI: 10.1182/blood-2010-09-305128.
26. Da Silva Almeida A.C., Abate F., Khiabanian H. et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet 2015;47(12): 1465–70. DOI: 10.1038/ng.3442.
27. Yanagi T., Nishihara H., Fujii K. et al. Comprehensive cancer-related gene analysis reveals that active KRAS mutation is a prognostic mutation in mycosis fungoides. J Dermatol Sci 2017;88(3):367–70. DOI: 10.1016/j.jdermsci.2017.07.013.
28. Wang L., Ni X., Covington K.R. et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet 2015;47(12):1426–34. DOI: 10.1038/ng.3444.
29. Bastidas Torres A.N., Najidh S., Tensen C.P., Vermeer M.H. Molecular advances in cutaneous T-cell lymphoma. Semin Cutan Med Surg 2018;37(1):81–6. DOI: 10.12788/j.sder.2018.007.
30. Ungewickell A., Bhaduri A., Rios E. et al. Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2. Nat Genet 2015;47(9):1056–60. DOI: 10.1038/ng.3370.
31. https://cancer.sanger.ac.uk/cosmic.
32. Alexandrov L.B., Nik-Zainal S., Wedge D.C. et al. Signatures of mutational processes in human cancer. Nature 2013;500(7463):415–21. DOI: 10.1038/nature12477.
33. Lobas A.A., Pyatnitskiy M.A., Chernobrovkin A.L. et al. Proteogenomics of malignant melanoma cell lines: the effect of stringency of exome data filtering on variant peptide identification in shotgun proteomics. J Proteome Res 2018;17(5):1801–11. DOI: 10.1021/acs.jproteome.7b00841.
34. Choi J., Goh G., Walradt T. et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet 2015;47(9):1011–9. DOI: 10.1038/ng.3356.
35. Steininger A., Ebert G., Becker B.V. et al. Genome-wide analysis of interchromosomal interaction probabilities reveals chained translocations and overrepresentation of translocation breakpoints in genes in a cutaneous T-cell lymphoma cell line. Front Oncol 2018;8:183. DOI: 10.3389/fonc.2018.00183.
36. Rausch T., Jones D.T., Zapatka M. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012;148(1–2):59–71. DOI: 10.1016/j.cell.2011.12.013.
37. Van Doorn R., Slieker R.C., Boonk S.E. et al. Epigenomic analysis of Sézary syndrome defines patterns of aberrant DNA methylation and identifies diagnostic markers. J Invest Dermatol 2016;136(9):1876–84. DOI: 10.1016/j.jid.2016.03.042.
38. Kiel M.J., Sahasrabuddhe A.A., Rolland D.C.M. et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. Nat Commun 2015;6:8470. DOI: 10.1038/ncomms9470.
39. Iżykowska K., Przybylski G.K., Gand C. et al. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sézary syndrome. Oncotarget 2017;8(24):39627–39. DOI: 10.18632/oncotarget.17383.
40. Zhao L., Okhovat J.P., Hong E.K. et al. Preclinical studies support combined inhibition of BET family proteins and histone deacetylases as epigenetic therapy for cutaneous T-cell lymphoma. Neoplasia 2019;21(1):82–92. DOI: 10.1016/j.neo.2018.11.006.
41. Andrews J.M., Schmidt J.A., Carson K.R. et al. Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma. EBioMedicine 2019;46:170– 83. DOI: 10.1016/j.ebiom.2019.07.053.
42. Tanas A.S., Borisova M.E., Kuznetsova E.B. et al. Rapid and affordable genome-wide bisulfite DNA sequencing by XmaI-reduced representation bisulfite sequencing. Epigenomics 2017;9(6):833–47. DOI: 10.2217/epi-2017-0031.
43. Yawalkar N., Ferenczi K., Jones D.A. et al. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood 2003;102(12):4059–66. DOI: 10.1182/blood-2003-04-1044.
44. Iyer A., Hennessey D., O’Keefe S. et al. Clonotypic heterogeneity in cutaneous T-cell lymphoma (mycosis fungoides) revealed by comprehensive whole-exome sequencing. Blood Adv 2019;3(7):1175–84. DOI: 10.1182/bloodadvances.2018027482.
45. Hamrouni A., Fogh H., Zak Z. et al. Clonotypic diversity of the T-cell receptor corroborates the immature precursor origin of cutaneous T-cell lymphoma. Clin Cancer Res 2019;25(10):3104–14. DOI: 10.1158/1078-0432.CCR-18-4099.
46. Linnemann T., Gellrich S., Lukowsky A. et al. Polyclonal expansion of T cells with the TCR V beta type of the tumour cell in lesions of cutaneous T-cell lymphoma: evidence for possible superantigen involvement. Br J Dermatol 2004;150(5):1013–7. DOI: 10.1111/j.1365-2133.2004.05970.x.
47. Ruggiero E., Nicolay J.P., Fronza R. et al. High-resolution analysis of the human T-cell receptor repertoire. Nat Commun 2015;6:8081. DOI: 10.1038/ncomms9081.
48. Ru H., Zhang P., Wu H. Structural gymnastics of RAG-mediated DNA cleavage in V(D)J recombination. Curr Opin Struct Biol 2018;53:178–86. DOI: 10.1016/j.sbi.2018.11.001.
49. Nielsen P.R., Eriksen J.O., Lindahl L.M. et al. Diagnostic two-gene classifier in early-stage mycosis fungoides: a retrospective multicenter study. J Invest Dermatol 2021;141(1):213–7.e5. DOI: 10.1016/j.jid.2020.04.026.
Рецензия
Для цитирования:
Хаджиева М.Б., Захарова Е.С., Калинина Е.В., Абрамов Д.С., Румянцев А.Г., Ларин С.С. Молекулярно-генетические особенности развития Т-клеточных лимфом кожи на примере грибовидного микоза и синдрома Сезари. Онкогематология. 2022;17(1):65-74. https://doi.org/10.17650/1818-8346-2022-17-1-65-74
For citation:
Khadzhieva M.B., Zakharova E.S., Kalinina E.V., Abramov D.S., Rumyantsev A.G., Larin S.S. Molecular genetic features of cutaneous T-cell lymphomas development on example of mycosis fungoides and Sezary syndrome. Oncohematology. 2022;17(1):65-74. (In Russ.) https://doi.org/10.17650/1818-8346-2022-17-1-65-74