Preview

Oncohematology

Advanced search

Microsatellite instability (MSI, EMAST) in the pathogenesis of follicular lymphoma

https://doi.org/10.17650/1818-8346-2021-16-2-56-69

Abstract

Background. Genetic instability, an important phenomenon involved in oncogenic transformation and tumor progression, is associated with the insufficiency of the multicomponent DNA repair complex, in particular, the nucleotide mismatch repair (MMR) system. The MMR defect manifests itself as abnormalities in DNA microsatellite repeats, or microsatellite instability (MSI). In the studies of colorectal cancer, the role of MSI in prognostication of the disease, and defining the choice of specific therapy with immune checkpoint inhibitors has been proven.

However, in lymphatic system tumors, the significance of this phenomenon is poorly understood. Determination of genetic instability in the onset of follicular lymphoma, a disease characterized by a heterogeneous course, may have prognostic value.

Objective: to determine the genetic instability at the onset of follicular lymphoma.

Materials and methods. Here we report an analysis of 24 microsatellite repeats and amelogenin loci in tumor cells of 46 follicular lymphoma patients.

Results. In the studied cohort, lesions in microsatellite repeats were presented by MSI in 9 cases (19.6 %) and the loss of heterozygosity (LOH) in 19 cases (41.3 %). Most frequent lesions were found for the SE33 marker located at the q14 locus of chromosome 6. A significant association was shown between MSI and the double-hit follicular lymphoma group with rearrangements of the MYC and BCL2/BCL6 genes.

Conclusion. Thus, our data indicate that the MSI phenomenon might be involved in the pathogenesis of the lymphatic tumors and particularly follicular lymphoma. However further studies on the expanded cohorts of patients are required to define the possible prognostic value of MSI in lymphatic tumors.

About the Authors

K. A. Sychevskaya
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

Kseniya Andreevna Sychevskaia

4 Novyy Zykovskiy Proezd, Moscow 125167



S. K. Kravchenko
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



N. V. Risinskaya
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



А. Е. Misyurina
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



E. E. Nikulina
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



F. E. Babaeva
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



A. B. Sudarikov
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



References

1. Boland C.R., Troncale F.J. Familial colonic cancer without antecedent polyposis. Ann Intern Med 1984;100(5):700–1. DOI: 10.7326/0003-4819-100-5-700.

2. Ionov Y., Peinado M.A., Malkhosyan S. et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993;363(6429):558–61. DOI: 10.1038/363558a0.

3. Thibodeau S.N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993;260(5109):816–9. DOI: 10.1126/science.8484122.

4. Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138(6):2073–87.e3. DOI: 10.1053/j.gastro.2009.12.064.

5. Hause R.J., Pritchard C.C., Shendure J., Salipante S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016;22(11):1342–50. DOI: 10.1038/nm.4191.

6. Fujimoto A., Fujita M., Hasegawa T. et al. Comprehensive analysis of indels in whole-genome microsatellite regions and microsatellite instability across 21 cancer type. Genome Res 020;30(3): 334–46. DOI: 10.1101/gr.255026.119.

7. Swerdlow S.H., Campo E., Harris N.L. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edn. Lyon, France: IARC, 2017.

8. Casulo C., Byrtek M., Dawson K.L. et al. Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: an analysis from the National LymphoCare Study. J Clin Oncol 2015;33(23):2516–22. DOI: 10.1200/JCO.2014.59.7534.

9. Solal-Céligny P., Roy P., Colombat P. et al. Follicular lymphoma international prognostic index. Blood 2004;104(5):1258–65. DOI: 10.1182/blood-2003-12-4434.

10. Federico M., Bellei M., Marcheselli L. et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol 2009;27(27):4555–62. DOI: 10.1200/JCO.2008.21.3991.

11. Pastore A., Jurinovic V., Kridel R. et al. Integration of gene mutations in risk prognostication for patients receiving firstline immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 2015;16(9):1111–22. DOI: 10.1016/S1470-2045(15)00169-2.

12. Сидорова Ю.В., Сорокина Т.В., Бидерман Б.В. и др. Определение минимальной остаточной болезни у больных В-клеточным хроническим лимфолейкозом методом пациентспецифичной ПЦР. Клиническая лабораторная диагностика 2011:12:22–4.

13. Sidorova J.V., Biderman B.V., Nikulina E.E., Sudarikov A.B. A simple and efficient method for DNA extraction from skin and paraffin -embedded tissues applicable to T -cell clonality assays. Exp Dermatol 2012; 21(1):57–60. DOI: 10.1111/j.1600-0625.2011.01375.x.

14. van Dongen J.J., Langerak A.W., Brüggemann M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED‑2 Concerted Action BMH4-CT98–3936. Leukemia 2003;17(12):2257–317. DOI: 10.1038/sj.leu.2403202.

15. Смирнова С.Ю., Сидорова Ю.В., Рыжикова Н.В. и др. Эволюция опухолевых клонов при остром лимфобластном лейкозе взрослых. Acta Naturae 2016;8:108–17.

16. Buhard O., Suraweera N., Lectard A. et al. Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis Markers 2004;20(4–5):251–7. DOI: 10.1155/2004/159347.

17. Boland C.R., Thibodeau S.N., Hamilton S.R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58(22):5248–57.

18. Jin S.Y., Noffsinger A.E., Bejarano P. et al. Microsatellite instability is absent in liver and biliary mucosa of patients with primary sclerosing cholangitis. Dig Dis Sci 1999;44(3):595–601. DOI: 10.1023/a:1026621827208.

19. Мисюрина А.Е., Кравченко С.К., Ковригина А.М. и др. Роль транслокаций с участием локусов генов c-MYC/8q24, BCL2/18q21 и/или BCL6/3q27 у больных фолликулярной лимфомой. Ретроспективный анализ данных одноцентрового исследования. Терапевтический архив 2019;91(7):52‒62.

20. Robledo M., Martinez B., Arranz E. et al. Genetic instability of microsatellites in hematological neoplasms. Leukemia 1995;9(6):960–4.

21. Bedi G.C., Westra W.H., Farzadegan H. et al. Microsatellite instability in primary neoplasms from HIV+ patients. Nat Med 1995;1(1):65–8. DOI: 10.1038/nm0195-65.

22. Borie C., Raphael M., Buhard O. et al. Non Hodgkin lymphomas showing microsatellite instability (MSI-H NHL) are characterized by both specific biological and clinical features. Blood 2006;108:4754.

23. Indraccolo S., Minuzzo S., Nicoletti L. et al. Mutator phenotype in human hematopoietic neoplasms and its association with deletions disabling DNA repair genes and bcl-2 rearrangements. Blood 1999;94(7):2424–32.

24. Herranz M., Urioste M., Santos J. et al. Analysis of the INK4a/ARF locus in non-Hodgkin’s lymphomas using two new internal microsatellite markers. Leukemia 1999;13(5):808–10. DOI: 10.1038/sj.leu.2401409.

25. Randerson J., Cawkwell L., Jack A. et al. Microsatellite instability in follicle centre cell lymphoma. Br J Haematol 1996;93(1):160–2. DOI: 10.1046/j.1365-2141.1996.456994.x.

26. Gamberi B., Gaidano G., Parsa N. et al. Microsatellite instability is rare in B-cell non-Hodgkin’s lymphomas. Blood 1997;89(3):975–9.

27. Nagy M., Balázs M., Adám Z. et al. Genetic instability is associated with histological transformation of follicle center lymphoma. Leukemia 2000;14(12):2142–8. DOI: 10.1038/sj.leu.2401978.

28. Takakuwa T., Hongyo T., Syaifudin M. et al. Microsatellite instability and k-ras, p53 mutations in thyroid lymphoma. Jpn J Cancer Res 2000;91(3):280–6. DOI: 10.1111/j.1349-7006.2000.tb00942.x.

29. Miyashita K., Fujii K., Yamada Y. et al. Frequent microsatellite instability in non-Hodgkin lymphomas irresponsive to chemotherapy. Leuk Res 2008;32(8):1183–95. DOI: 10.1016/j.leukres.2007.11.024.

30. Umar A., Boland C.R., Terdiman J.P. et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;96(4):261–8. DOI: 10.1093/jnci/djh034.

31. Reyes G.X., Schmidt T.T., Kolodner R.D., Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015;124(4):443–62. DOI: 10.1007/s00412-015-0514-0.

32. Liu D., Keijzers G., Rasmussen L.J. DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res 2017;773:174–87. DOI: 10.1016/j.mrrev.2017.07.001.

33. Fishel R., Kolodner R.D. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev 1995;5(3):382–95. DOI: 10.1016/0959-437x(95)80055-7.

34. Miyaki M., Konishi M., Tanaka K. et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 1997;17(3):271–2. DOI: 10.1038/ng1197-271.

35. Kane M.F., Loda M., Gaida G.M. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997;57(5):808–11.

36. Gryfe R., Kim H., Hsieh E.T. et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000;342(2):69–77. DOI: 10.1056/NEJM200001133420201.

37. Oliveira A.F., Bretes L., Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front Oncol 2019;9:396. DOI: 10.3389/fonc.2019.00396.

38. Wang Y., Vnencak-Jones C.L., Cates J.M., Shi C. Deciphering elevated microsatellite alterations at selected tetra/ pentanucleotide repeats, microsatellite instability, and loss of heterozygosity in colorectal cancers. J Mol Diagn 2018;20(3):366–72. DOI: 10.1016/j.jmoldx.2018.02.001.

39. Haugen A.C., Goel A., Yamada K. et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res 2008;68(20):8465–72. DOI: 10.1158/0008-5472.CAN-08-0002.

40. Torshizi Esfahani A., Seyedna S.Y., Nazemalhosseini Mojarad E. et al. MSI-L/ EMAST is a predictive biomarker for metastasis in colorectal cancer patients. J Cell Physiol 2019;234(8):13128–36. DOI: 10.1002/jcp.27983.

41. Bhinder M.A., Zahoor M.Y., Sadia H. et al. SE33 locus as a reliable genetic marker for forensic DNA analysis systems. Turk J Med Sci 2018;48(3):611–4. DOI: 10.3906/sag-1801-21.

42. Tilly H., Rossi A., Stamatoullas A. et al. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 1994;84(4):1043–9.

43. Offit K., Parsa N.Z., Gaidano G. et al. 6q deletions define distinct clinico-pathologic subsets of non-Hodgkin’s lymphoma. Blood 1993;82(7):2157–62.

44. Compagno M., Lim W.K., Grunn A. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009;459(7247):717–21. DOI: 10.1038/nature07968.

45. Oricchio E., Nanjangud G., Wolfe A.L. et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 2011;147(3):554–64. DOI: 10.1016/j.cell.2011.09.035.

46. Boi M., Zucca E., Inghirami G., Bertoni F. PRDM1/BLIMP1: a tumor suppressor gene in B and T cell lymphomas. Leuk Lymphoma 2015;56(5):1223–8. DOI: 10.3109/10428194.2014.953155.


Review

For citations:


Sychevskaya K.A., Kravchenko S.K., Risinskaya N.V., Misyurina А.Е., Nikulina E.E., Babaeva F.E., Sudarikov A.B. Microsatellite instability (MSI, EMAST) in the pathogenesis of follicular lymphoma. Oncohematology. 2021;16(2):56-69. (In Russ.) https://doi.org/10.17650/1818-8346-2021-16-2-56-69

Views: 9547


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)