Preview

Онкогематология

Расширенный поиск

Фуллерены и апоптоз

https://doi.org/10.17650/1818-8346-2013-8-1-65-71

Полный текст:

Аннотация

Многие представители обширного семейства водорастворимых аддуктов фуллеренов и наночастиц на их основе привлек ают серьезное внимание как противовирусные агенты, противоопухолевые агенты и средства адресной доставки лекарств. Сегодня получено огромное количество таких производных фуллерена С60. Однако для внедрения фуллереновых производных в медицинскую практику необходимо понимание причин и механизмов прямых и отдаленных последствий их эффектов in vivo. В первую очередь это касается их влияния на регуляцию процессов пролиферации, апоптоза и некроза. Огромное значение имеют способ получения, функционализации и морфология фуллереновых наночастиц (их размеры, форма, рельеф поверхности, аффинность к клеточным структурам), т. е. параметры, в зависимости от которых биологические эффекты наночастиц могут меняться от цитопротекторного до цитотоксического. В данной лекции содержится анализ современных представлений о влиянии фуллеренов и их производных на сигнальные пути апоптоза нормальных и опухолевых клеток.

Об авторах

М. А. Орлова
ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
Химический факультет, кафедра радиохимии


Т. П. Трофимова
ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
Химический факультет, кафедра радиохимии


А. П. Орлов
ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
медико-биологический факультет, кафедра медицинских нанобиотехнологий


О. А. Шаталов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


Ю. К. Наполов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


А. А. Свистунов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


В. П. Чехонин
ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
медико-биологический факультет, кафедра медицинских нанобиотехнологий


Список литературы

1. Lebovits R., Rosenblum M. Substuted fullerenes and their use as inhibitors of cell death, US Patent, № 0197950 A1, 2009.

2. Friedman S.H., De Camp D.L., Sijbesma R.P. et al. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 1993;115:6506–9.

3. Park K.H., Chhowalla M., Iqbal Z., Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 2003;278:50212–6.

4. Redmill P.S., McCabe C. Molecular dynamics study of the behavior of selected nanoscale building blocks in a gel-phase lipid bilayer. J Phys Chem B 2010;114:9165–72.

5. Andreev I., Petrukhina A., Garmanova A. et al. Penetration of fullerene C60 derivatives through biological membranes. Fullerenes Nanotubes & Carbon Nanostructures 2008;16:89–102.

6. Johnson G.L., Lapadat R.L. Mitogenactivated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science 2002;298:1911–2.

7. Фатхутдинова Л.М., Халиулин Т.О., Зальялов Р.Р. Токсичность инженерных наночастиц. Казанский мед журн 2009;90:578–84.

8. Manna S.K., Sarkar S., Barr J. et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 2005;5:1676–84.

9. Yudoh K., Karasawa R., Masuko K., Kato T. Water-soluble fullerene (C60) inhibits the osteoclast differentiation and bone destruction in arthritis. Int J Nanomed 2009;4:233–9.

10. Okada T., Otani H., Wu Y. et al. Role of F-actin organization in p38 MAPkinasemediated apoptosis and necrosis in neonatal rat cardiomyocytes subjected to simulated ischemia and reoxygenation. Am J Physiol Heart Circ Physiol 2005;289:2310–8.

11. Luschen S., Scherer G., Ussat S. et al. Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kB, elicits caspase activity, and enhances cytotoxicity. Exp Cell Res 2004;293:196–206.

12. Rebecca M., Hsing-Lin W., Jun G. et al. Impact of physicochemical properties of engineered fullerenes on key biological responses. Toxicol Appl Pharmacol 2009;234:58–67.

13. Zogovic N.S., Nikolic N.S., Vranjes-Djuric S.D. et al. Opposite effects of nanocrystalline fullerene (C60) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancerpromoting activity of C60. Biomaterials 2009;30:6940–6.

14. Huang Y.L., Shen C.K.F., Luh T.Y. et al. lockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxy-fullerene. Eur J Biochem 1998;254:38–43.

15. Li W., Zhao L., Wei T. et al. The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles. Biomaterials 2011;32:4030–41.

16. Nakagawa Y., Suzuki T., Ishii H. et al. Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction. Arch Toxicol 2011;85:1429–40.

17. Rouse J.G., Yang J.Z., Barron A.R., Monteiro-Riviere N.A. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol In Vitro 2006;20(8):1313–20.

18. Liu R.L., Cai X.Q., Wang J.D. et al. Research on the bioactivities of C60- dexamethasone. J Nanosci Nanotechnol 2009;9:3171–6.

19. Yang D., Zhao Y., Guo H. et al. [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 2010;4(2):1178–86.

20. Misirkic M.S., Todorovic-Markovic B.M., Vucicevic L.M. et al. The protection of cells from nitric oxide-mediated apoptotic death by mechanochemically synthesized fullerene (C60) nanoparticles. Biomaterials 2009;30:2319–28.

21. Xu A., Chai Y., Nohmi T., Hei T.K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 2009;6:3–16.

22. Hu Z., Huang Y., Guan W. et al. The protective activities of water-soluble C60 derivatives against nitric oxide-induced cytotoxicity in rat pheochromocytoma cells. Biomaterials 2010;31:8872–81.

23. Huang S.S., Tsai S.K., Chin C.L. et al. Neuroprotective effect of hexasulfobutylated C60 on rats subjected to focal cerebral ischemia. Free Rad Biol Med 2001;30(6):643–9.

24. Bisaglia M., Natalini B.L., Pellicciari R. et al. Carboxyfullerenes as neuroprotective agents C3-fullerotris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J Neurochem 2000;74:1197–204.

25. Chen Y.W., Hwang K.C.H., Yen C.C., Lai Y.L. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol 2004;287:21–6.

26. Chien C.T., Chen C.F., Hsu S.M. et al. Forced expression of bcl-2 and bcl-xL by novel water-soluble fullerene, C60(glucosamine)6, reduces renal ischemia/ reperfusion-induced oxidative stress. Fuller Nanotub Car 2001;9:77–88.

27. Kotelnikova R.A., Kotelnikov A.I., Bogdanov G.N. et al. Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60. FEBS Lett 1996;389:111–4.

28. Boutorine A.S., Tokuyama H., Takasugi M. et al. Fullerene-oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew Chem Int Ed 1994;33:2426–65.

29. Kim J.E., Lee M. Fullerene inhibitsamyloid peptide aggregation. Biochem Biophys Res Commun 2003;303:576–9.

30. Calvaresi M., Zerbetto F. Baiting proteins with C60. ACS Nano 2010;4:2283–99.

31. Gupta S., Dhawan A., Shanker R. In silico approaches: prediction of biological targets for fullerene derivatives. J Biomed Nanotechnol 2011;7:91–2.

32. Wolff D.J., Barbieri C.M., Richardson C.F. et al. Trisamine C60-fullerene adducts inhibit neuronal nitric oxide synthase by acting as highly potent calmodulin antagonists. Arch Biochem Biophys 2002;399:130–41.

33. Mashino T., Okuda K., Hirota T. et al. Inhibitory effect of fullerene derivatives on glutathione reductase. Fullerene Sci Technol 2001;9:191–6.

34. Tokuyama H., Yamago S., Nakamura E. et al. Photoinduced biochemical-activity of fullerene carboxylic-acid. J Am Chem Soc 1993;115:7918–9.

35. Marcorin G.L., Da Ros T., Castellano S. et al. Design and synthesis of novel [60] fullerene derivatives as potential HIV aspartic protease inhibitors. Org Lett 2000;2:3955–8.

36. Schuster D.I., Wilson S.R., Schinazi R.F. Anti-human immunodeficiency virus activity and cytotoxicity of derivatized buckminsterfullerenes. Bioorg Med Chem Lett 1996;6(11):1253–6.

37. Braden B.C., Goldbaum F.A., Chen B.X. et al. X-Ray crystal structure of an anti-buckminsterfullerene antibody fab fragment: biomolecular recognition of C60. Proc Natl Acad Sci U.S.A. 2000;97:12193–7.

38. Rozhkov S.P., Goryunov A.S., Sukhanova G.A. et al. Protein interaction with hydrated C60 fullerene in aqueous solutions. Biochem Biophys Res Commun 2003;303:562–6.

39. Belgorodsky B., Fadeev L., Kolsenik J., Gozin M. Formation of a soluble stable complex between pristine C60-fullerene and a native blood protein. Chembiochem 2006;7:1783–9.

40. Belgorodsky B., Fadeev L., Ittah V. et al. Formation and characterization of stable human serum albumin-tris-malonic acid [C60] fullerene complex. Bioconjug Chem 2005;16:1058–62.

41. Yang S.T., Wang H., Guo L. et al. Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. Nanotechnology 2008;19:395–401.

42. Zhang X.F., Shu C.Y., Xie L. et al. Protein conformation changes induced by a novel organophosphate-containing watersoluble derivative of a C60 fullerene nanoparticle. J Phys Chem C 2007;111:14327–33.

43. Benyamini H., Shulman-Peleg A., Wolfson H.J. et al. Interaction of C60-fullerene and carboxyfullerene with proteins: docking and binding site alignment. Bioconjug Chem 2006;17:378–86.

44. Belgorodsky B., Fadeev L., Kolsenik J., Gozin M. Biodelivery of a fullerene derivative. Bioconjug Chem 2007;18:1095–100.

45. Ueng T.H., Kang J.J., Wang H.W. et al. Suppression of microsomal cytochrome P450-Dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol Lett 1997;93:29–37.

46. Pastorin G., Marchesan S., Hoebeke J. et al. Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesteras. Org Biomol Chem 2006;4:2556–62.

47. Iwata N., Mukai T., Yamakoshi Y.N. et al. Effect of C60, a fullerene, on the activities of glutathione S-transferase and glutathion-related enzymes. Fullerenes, Nanotubes, Carbon Nanostruct 1998;6:213–26.

48. Innocenti A., Durdagi S., Doostdar N. et al. Nanoscale enzyme inhibitors: fullerenes inhibit carbonic anhydrase by ccluding the active site entrance. Bioorg Med Chem 2010;18:2822–8.

49. Marczak R., Hoang V.T., Noworyta K. et al. Molecular recognition of adenine, adenosine and ATP at the air–water interface by a uracil appended fullerene. J Mater Chem 2002;12:2123–9.

50. Ito M., Nakashima N. Design, synthesis and photophysical properties of C60-modified proteins. J Mater Chem 2002;12:2026–33.

51. Желтухин А.О., Чумаков П.М. Повседневные и индуцированные функции гена p53. Усп биол наук 2010;50:447–516.

52. Liang Y., Luo F., Lin Y. et al. C60 affects DNA replication in vitro by decreasing the melting temperature of DNA templates. Carbon 2009;47:1457–65.

53. Kang F., Song G.G. Inhibition of Taq DNA polymerase and DNA exonuclease ExoIII by an aqueous nanoparticle suspension of a bis-methanophosphonate fullerene. Mater Sci Forum 2011;685:345–51.

54. An H., Jin B. DNA exposure to buckminsterfullerene (C60): toward DNA stability, reactivity, and replication. Environ Sci Technol 2011;45:6608–16.

55. Rohs R., West S.M., Sosinsky A. et al. The role of DNA shape in protein-DNA recognition. Nature 2009;461:1248–53.

56. Pinteala M., Dascalu A., Ungurenasu C. Binding fullerenol C60(OH)24 to dsDNA. Int J Nanomed 2009;4:193–9.

57. Shinohara N., Matsumoto K., Endoh S. et al. In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol Lett 2009;191:289–96.

58. Baker G.L., Gupta A., Clark M.L. et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 2008;101:122–31.

59. Seki M., Fujishima S., Gondo Y. et al. Acute toxicity of fullerene C60 in aquatic organism. Environ Sci 2008;21:53–62.


Для цитирования:


Орлова М.А., Трофимова Т.П., Орлов А.П., Шаталов О.А., Наполов Ю.К., Свистунов А.А., Чехонин В.П. Фуллерены и апоптоз. Онкогематология. 2013;8(1):65-71. https://doi.org/10.17650/1818-8346-2013-8-1-65-71

For citation:


Orlova M.A., Trofimova T.P., Orlov A.P., Shatalov O.A., Napolov Y.K., Svistunov A.A., Chekhonin V.P. Fullerene and apoptosis. Oncohematology. 2013;8(1):65-71. (In Russ.) https://doi.org/10.17650/1818-8346-2013-8-1-65-71

Просмотров: 1243


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)