Prognostic value of the modified multiple myeloma comorbidity index in real clinical practice
https://doi.org/10.17650/1818-8346-2020-15-3-51-62
Abstract
Background. An increase in the number of patients with multiple myeloma (MM) necessitates the creation of reliable tools for assessing their somatic status (comorbidity) in order to personalize the optimal treatment regimen that helps to minimize its toxicity, improves survival and patients quality of life.
The objective of this study was to modify the MM comorbidity index (MCI) by adding an additional variable reflecting the biological properties of the tumor, and to determine the informativeness of the new scale – a modified MM comorbidity index (M-MCI), to predict the outcome and select personalized therapy in patients with MM in real clinical practice.
Materials and methods. From January 2012 to December 2017 the study included 369 patients with newly diagnosed MM (134 men and 235 women) who were hospitalized in the hematology department of the City Clinical Hospital No. 2, Novosibirsk. The median age of the patients was 67 (32–82) years. The prognostic value of concomitant diseases and individual prognostic factors in relation to the overall survival of patients with MM was evaluated.
Results. Cox multivariate analysis showed that the most significant predictors of reduced overall survival of patients with MM are impaired renal function (glomerular filtration rate <30 ml / min / 1.73 m2 (according to the CKD-EPI formula), general condition according to the Karnowski scale ≤70 %, chronic obstructive pulmonary disease with moderate (50 % ≤ forced expiratory volume in 1 second <80 %) and severe (30 % ≤ forced expiratory volume in 1 second <50 %) severity of bronchial obstruction and the ratio κ / λ free light chains <0.04 or >65. These factors were combined into a weighted 5‑point scale M-MCI. A comparative analysis of survival depending on the value of the M-MCI allowed us to distribute patients with MM into groups of high (M-MCI 3–4 points) and standard (M-MCI 0–2 points) risk with significantly different indicators of overall survival (median overall survival amounted to 15.5 months in the high and 60 months in the standard risk group; χ2 = 58, p <0.016) and confirm the prognostic value of M-MCI in relation to the outcome of MM.
Conclusion. In terms of its prognostic significance in predicting an adverse outcome, the proposed M-MCI scale is superior to its prototype – the MCI. The median overall survival in the high-risk group according to the M-MCI was 15.5 months compared to 20 months according to the MCI; the median overall survival in the group the standard risk was 60 and 50 months, respectively (χ2 = 58 (M-MCI) versus χ2 = 42 (MCI); p <0.001). The advantages of M-MCI are also its more accurate assessment of the physical condition of patients with MM and its simple clinical applicability.
About the Authors
N. V. SkvortsovaRussian Federation
52 Krasnyy Prospekt, 630091 Novosibirsk, Russia
I. B. Kovynev
Russian Federation
52 Krasnyy Prospekt, 630091 Novosibirsk, Russia
A. B. Loginova
Russian Federation
52 Krasnyy Prospekt, 630091 Novosibirsk, Russia
K. V. Halzov
Russian Federation
52 Krasnyy Prospekt, 630091 Novosibirsk, Russia
T. I. Pospelova
Russian Federation
52 Krasnyy Prospekt, 630091 Novosibirsk, Russia
References
1. Plummer С., Driessen C., Szabo Z. et al. Management of cardiovascular risk in patients with multiple myeloma. Blood Cancer J 2019;9(3):26. DOI: 10.1038/s41408-019-0183-y.
2. Engelhardt M., Terpos E., Kleber M. et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica 2014;99(2):232–42. DOI: 10.3324/haematol.2013.099358.
3. Lohr J.G., Stojanov P., Carter S.L. et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014;25(1):91–101. DOI: 10.1016/j.ccr.2013.12.015.
4. Ludwig H., Sonneveld P., Davies F. et al. European perspective on multiple myeloma treatment strategies in 2014. Oncologist 2014;19(8):829–44. DOI: 10.1634/theoncologist.2014-0042.
5. Palumbo A., Bringhen S., Ludwig H. et al. Personalized therapy in multiple myeloma according to patient age and vulnerability: a report of the European Myeloma Network (EMN). Blood 2011;118(17):4519–29. DOI: 10.1182/blood-2011-06-358812.
6. Bringhen S., Mateos M.V., Zweegman S. et al. Age and organ damage correlate with poor survival in myeloma patients: metaanalysis of 1435 individual patient data from 4 randomized trials. Haematologica 2013;98(6):980–7. DOI: 10.3324/haematol.2012.075051.
7. Bila J., Jelicic J., Djurasinovic V. et al. Prognostic effect of comorbidity indices in elderly patients with multiple myeloma. Clin Lymphoma Myeloma Leuk 2015;15(7):416–9. DOI: 10.1016/j.clml.2015.03.004.
8. Onec B., Okutan H., Albayrak M. et al. Comparative evaluation of common comorbidity scores and Freiburger comorbidity index as prognostic variables in a real life multiple myeloma population. Indian J Hematol Blood Transfus 2016;32(4):424–30. DOI: 10.1007/s12288-015-0618-y.
9. Zhong Y.P., Zhang Y.Z., Liao A.J. et al. Geriatric assessment to predict survival and risk of serious adverse events in elderly newly diagnosed multiple myeloma patients: a multicenter study in China. Chin Med J 2017;130(2):130–4. DOI: 10.4103/0366-6999.197977.
10. Williams G.R., Mackenzie A., Magnuson A. et al. Comorbidity in older adults with cancer. J Geriatr Oncol 2016;7(4):249–57. DOI: 10.1016/j.jgo.2015.12.002.
11. Mohammadi M., Cao Y., Glimelius I. et al. The impact of comorbid disease history on all-cause and cancer- specific mortality in myeloid leukemia and myeloma – a Swedish population- based study. BMC Cancer 2015;15:850. DOI: 10.1186/s12885-015-1857-x.
12. Greipp P.R., Miguel J.S., Durie B.G. et al. International staging system for multiple myeloma. J Clin Oncol 2005;23(15):3412–20. DOI: 10.1200/jco.2005.04.242.
13. Duri B.G., Salmon S.E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, respons to treatment, and survival. Cancer 1975;36(3):842–54. DOI: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u.
14. Ruiz M., Reske T., Cefalu C., Estrada J. Management of elderly and frail elderly cancer patients: the importance of comprehensive geriatrics assessment and the need for guidelines. Am J Med Sci 2013;346(1):66–9. DOI: 10.1097/maj.0b013e31826d59aa.
15. García de Veas Silva J.L., Guitarte C. Bermudo, Valladares P. Menéndez et al. Prognostic value of serum free light chains measurements in multiple myeloma patients. PLoS One 2016;11(11):0166841. DOI: 10.1371/journal.pone.0166841.
16. Iwama K.I., Chihara D., Tsuda K. et al. Normalization of free light chain kappa/ lambda ratio is a robust prognostic indicator of favorable outcome in patients with multiple myeloma. Eur J Haematol 2013;90(2):134–41. DOI: 10.1111/ejh.12050.
17. Kapoor P., Kumar S.K., Dispenzieri A. et al. Importance of achieving stringent complete response after autologous stemcell transplantation in multiple myeloma. J Clin Oncol 2013;31(36):4529–35. DOI: 10.1200/JCO.2013.49.0086.
18. Radocha J., Pour L., Pika T. et al. Multicentered patient-based evidence of the role of free light chain ratio normalization in multiple myeloma disease relapse. Eur J Haematol 2016;96(2):119–27. DOI: 10.1111/ejh.12556.
19. Paiva B., Martinez-Lopez J., Vidriales M.B. et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol 2011;29(12):1627–33. DOI: 10.1200/JCO.2010.33.1967.
20. Alhaj Moustafa M., Rajkumar S.V., Dispenzieri A. et al. Utility of serum free light chain measurements in multiple myeloma patients not achieving complete response to therapy. Leukemia 2015;29(10):2033–8. DOI: 10.1038/leu.2015.118.
21. Linn B.S., Linn M.W., Gurel L. Cumulative illness rating scale. J Am Geriatr Soc 1968;16(5):622–6. DOI: 10.1111/j.1532-5415.1968.tb02103.x.
22. Miller M., Towers A. A manual of guidelines for scoring the cumulative illness rating scale for geriatrics (CIRS-G). Pittsburgh, Pennsylvania, 1991. Available at: http://www.anq.ch/fileadmin/redaktion/deutsch/20121211_CIRSG_Manual_E.pdf.
23. Sorror M.L., Maris M.B., Storb R. et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005;106(8):2912–9. DOI: 10.1182/blood-2005-05-2004.
24. Kaplan M.H., Feinstein A.R. The importance of classifying initial co- morbidity in evaluating the outcome of diabetes mellitus. J Chronic Dis 1974;27(7–8):387–404. DOI: 10.1016/0021-9681(74)90017-4.
25. Charlson M.E., Pompei P., Ales K.L., MacKenzie C.R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40(5):373–83. DOI: 10.1016/0021-9681(87)90171-8.
26. Kleber M., Ihorst G., Terhorst M. et al. Comorbidity as a prognostic variable in multiple myeloma: comparative evaluation of common comorbidity scores and use of a novel MM-comorbidity score. Blood Cancer J 2011;1(9):35. DOI: 10.1038/bcj.2011.34.
27. Engelhardt M., Dold S.M., Ihorst G. et al. Geriatric assessment in multiple myeloma patients: validation of the International Myeloma Working Group (IMWG) score and comparison with other common comorbidity scores. Haematologica 2016;101(9):1110–9. DOI: 10.3324/haematol.2016.148189.
28. Kumar S.K., Rajkumar S.V., Dispenzieri A. et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;111(5):2516–20. DOI: 10.1182/blood-2007-10-116129.
29. Mey U.J., Leitner C., Driessen C. et al. Improved survival of older patients with multiple myeloma in the era of novel agents. Hematol Oncol 2016;34:217–23. DOI: 10.1002/hon.2205.
30. Rajkumar S.V., Dimopoulos M.A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:538–48. DOI: 10.1016/S1470-2045(14)70442-5.
31. Mendeleeva L.P., Votyakova O.M., Pokrovskaya O.S. et al. National clinical guidelines for the diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya = Russian Journal of Hematology and Transfusiology 2016;61(1 Suppl 2):1–24. (In Russ.).
32. Skvortsova N.V., Pospelova T.I., Khalzov K.V. et al. The prognostic value of serum free light chains of immunoglobulins in multiple myeloma in real clinical practice. Sibirskiy meditsinskiy zhurnal = The Siberian Medical Journal 2020;(2):4–19. (In Russ.).
33. Kleber M., Ihorst G., Gross B. et al. Validation of the Freiburg Comorbidity Index in 466 multiple myeloma patients and combination with the international staging system are highly predictive for outcome. Clin Lymphoma Myeloma Leuk 2013;13(5): 541–51. DOI: 10.1016/j.clml.2013.03.013.
34. Levey A.S., Stevens L.A., Schmid S.H. et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604–12. DOI: 10.7326/0003-4819-150-9-200905050-00006.
Review
For citations:
Skvortsova N.V., Kovynev I.B., Loginova A.B., Halzov K.V., Pospelova T.I. Prognostic value of the modified multiple myeloma comorbidity index in real clinical practice. Oncohematology. 2020;15(3):51-62. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-3-51-62