Preview

Oncohematology

Advanced search

Pediatric acute lymphoblastic leukemia treatment protocols improvement: emphasis on minimal residual disease

https://doi.org/10.17650/1818-8346-2020-15-3-12-26

Abstract

Treatment of acute lymphoblastic leukemia (ALL) in children during the last 50 years has changed significantly, which has increased the survival of patients from 10–15 % in the early 60s to 80–85 % by the mid-2000s. Such results have been achieved through the development of new polychemotherapy regimens, the introduction of neuroleukemia prophylaxis, the strengthening of standard chemotherapy by increasing the dose and / or frequency of chemotherapeutic drugs administration, and the definition of criteria for patient stratification into prognostic risks groups and the development of principles of risk-adopted therapy.

However, inspite of the overall success of pediatric acute lymphoblastic leukemia therapy, some variants of acute lymphoblastic leukemia associated with poor prognosis, especially acute lymphoblastic leukemia with BCR-ABL1 and MLL rearrangements. Besides the prolonged persistence of minimal residual disease is also an unfavorable prognostic factor requiring therapy intensification.

In the current issue we present the main steps in the evolution of programmed chemotherapy of children with acute lymphoblastic leukemia. Great attention was paid for modern risk-stratifying criteria with an emphasis on minimal residual disease.

About the Authors

M. A. Shervashidze
Pediatric Oncology and Hematology Research Institute, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478, Russia



T. T. Valiev
Pediatric Oncology and Hematology Research Institute, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


References

1. Attarbaschi A., Panzer-Grümayer E.R., Mann G. et al. Minimal residual diseasebased treatment is adequate for relapseprone childhood acute lymphoblastic leukemia with an intrachromosomal amplification of chromosome 21: the experience of the ALL-BFM 2000 trial. Klin Padiatr 2014;226(6–7):338–43. DOI: 10.1055/s-0034-1387795.

2. Brüggemann M., Schrauder A., Raff T. et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010;24(3):521–35. DOI: 10.1038/leu.2009.268.

3. Brüggemann M. Standardized MRD monitoring in european all trials. Annal Hematol 2013;(92):33–6.

4. Buitenkamp T.D., Izraeli S., Zimmermann M. et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood 2014;123(1):70–7. DOI: 10.1182/blood-2013-06-509463.

5. Campana D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009;23(5):1083–98. DOI: 10.1016/j.hoc.2009.07.010.

6. Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol 2012;19(4):313–8. DOI: 10.1097/MOH.0b013e3283543d5c.

7. Chatterjee T., Somasundaram V. Flow cytometric detection of minimal residual disease in B-lineage acute lymphoblastic leukemia by using “MRD lite: panel. Med J Armed Forces India 2017;73(1):54–7. DOI: 10.1016/j.mjafi.2016.10.006.

8. Chen X., Wood B.L. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev 2017;31(2):63–75. DOI: 10.1016/j.blre.2016.09.006.

9. Steinherz P.G. Acute Lymphoblastic Leukemia in Children. Encyclopedia of Cancer. 2002. 2nd edn (vol. 1). Pp.11–18.

10. Kliman D., Barnett M., Broady R. et al. Comparison of a pediatric-inspired treatment protocol versus standardintensity chemotherapy for young adults with standard-risk BCR-ABL negative acute lymphoblastic leukemia. Leuk Lymphoma 2017;58(4):909–15. DOI: 10.1080/10428194.2016.1222376.

11. Zhang R., Yang J.Y., Sun H.Q. et al. Comparison of minimal residual disease(MRD) monitoring by WT1 quantification between childhood acute myeloid leukemia and acute lymphoblastic leukemia. Eur Rev Med Pharmacol Sci 2015;19(14):2679–88.

12. Essig S., Li Q., Chen Y. et al. Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol 2014;15(8):841–51. DOI: 10.1016/S1470-2045(14)70265-7.

13. Arico M., Ziino O., Valsecchi M.G. et al. Acute lymphoblastic leukemia and Down syndrome: presenting features and treatment outcome in the experience of the Italian Association of Pediatric Hematology and Oncology (AIEOP). Cancer 2008;113(3):515–21. DOI: 10.1002/cncr.23587.

14. Farber S., Diamond L.K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 1948;238(23):787–93. DOI: 10.1056/NEJM194806032382301.

15. Burchenal J.H., Karnofsky D.A., Kingsley-Pillers E.M. et al. The effects of the folic acid antagonists and 2,6-diaminopurine on neoplastic disease, with special reference to acute leukemia. Cancer 1951;4(3):549–69. DOI: 10.1002/1097-0142(195105).

16. Frei E., Freireich E.J., Gehan E. et al. Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 1961;18:431–54.

17. Pigneux A., Montesinos P., Cong Z. et al. Testing for minimal residual disease in adults with acute lymphoblastic leukemia in Europe: a clinician survey. BMC Cancer 2018;18(1):1100. DOI: 10.1186/s12885-018-5002-5.

18. Pinkel D. Five-year follow-up of “total therapy” of childhood lymphocytic leukemia. JAMA 1971;216(4):648–52.

19. Sallan S.E., Hitchcock-Bryan S., Gelber R. et al. Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res 1983;43(11):5601–7.

20. Littman P., Coccia P., Bleyer W.A. et al. Central nervous system (CNS) prophylaxis in children with low risk acute lymphoblastic leukemia (ALL). Int J Rad Oncol Biol Phys 1987;13:1443–9. DOI: 10.1016/0360-3016(87)90308-7.

21. Gupta S., Devidas M., Loh M.L. et al. Flow-cytometric vs. -morphologic assessment of remission in childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group (COG). Leukemia 2018;32(6):1370–9. DOI: 10.1038/s41375-018-0039-7.

22. Pui C.H., Pei D., Coustan-Smith E. et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol 2015;16(4):465–74. DOI: 10.1016/S1470-2045(15)70082-3.

23. Wilejto M., Di Giuseppe G., Hitzler J. et al. Treatment of young children with CNS-positive acute lymphoblastic leukemia without cranial radiotherapy. Pediatr Blood Cancer 2015;62(11):1881–5. DOI: 10.1002/pbc.25620.

24. Silverman L.B., Stevenson K.E., O’Brien J.E. et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia 2010;24(2):320–34. DOI: 10.1038/leu.2009.253.

25. Borowitz M.J., Wood B.L., Devidas M. et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood 2015;126(8):964–71. DOI: 10.1182/blood-2015-03-633685.

26. Schrappe M., Bleckmann K., Zimmermann M. et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000). J Clin Oncol 2018;36(3):244–53. DOI: 10.1200/JCO.2017.74.4946.

27. Winkel M.L., Pieters R., Hop W.C. et al. Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia. J Clin Oncol 2011;29(31):4143–50. DOI: 10.1200/JCO.2011.37.3217.

28. Eckert C., Hagedorn N., Sramkova L. et al. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment. Leukemia 2015;29(8):1648–55. DOI: 10.1038/leu.2015.59.

29. Vora A., Goulden N., Wade R. et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol 2013;14(3):199–209. DOI: 10.1016/S1470-2045(12)70600-9.

30. Schramm F., Zur Stadt U., Zimmermann M. et al. Results of CОALL 07-03 study childhood ALL based on combined risk assessment by in vivo and in vitro pharmacosensitivity. Blood Adv 2019;3(22):3688–99. DOI: 10.1182/bloodadvances.2019000576.

31. Boychenko E.G., Rumyantseva Yu.V., Ponomareva N.I. et al. Comparative analysis of therapy results in children with acute lymphoblastic leukemia receiving ALL-MB-2002 and COALL-St.Petersburg- 92 protocols. Onkogematologiya = Oncohematology 2010;(2):25–35. (In Russ.).

32. Toft N., Birgens H., Abrahamsson J. et al. Results of NOPHO ALL 2008 treatment for patients aged 1–45 years with acute lymphoblastic leukemia. Leukemia 2018;32(3):606–15. DOI: 10.1038/leu.2017.265.

33. Sancho J.M., Ribera J.M., Xicoy B. et al. Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol 2007;78(2):102–10. DOI: 10.1111/j.1600-0609.2006.00778.x.

34. Denys B., van der Sluijs-Gelling A.J., Homburg C. et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2013;27(3):635–41. DOI: 10.1038/leu.2012.231.

35. Kandeel E., Madney Y., Amin R., Kamel A. Role of Minimal Residual Disease in the Clinical Course of T cell Acute Lymphoblastic Leukemia in Pediatric Patients. J Leukemia 2019;7(1):256.

36. Bartram C.R., Schrauder A., Köhler R., Schrappe M. Acute lymphoblastic leukemia in children: treatment planning via minimal residual disease assessment. Dtsch Arztebl Int 2012;109(40):652–8. DOI: 10.3238/arztebl.2012.0652.

37. Eckert C., von Stackelberg A., Seeger K. et al. Minimal residual disease after induction is the strongest predictor of prognosis in intermediate risk relapsed acute lymphoblastic leukaemia – long-term results of trial ALL-REZ BFM 95/96. Eur J Cancer 2013;49(6):1346–55. DOI: 10.1016/j.ejca.2012.11.010.

38. Hoelzer D. Monitoring and managing minimal residual disease in acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2013;290–3. DOI: 10.14694/EdBook_AM.2013.33.290.

39. Cooper S.L., Brown P.A. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am 2015;62(1):61–73. DOI: 10.1016/j.pcl.2014.09.006.

40. Van der Velden V.H., Cazzaniga G., Schrauder A. et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007;21(4):604–11. DOI: 10.1038/sj.leu.2404586.

41. Fielding A.K., Rowe J.M., Buck G. et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood 2014;123(6):843–50. DOI: 10.1182/blood-2013-09-529008.

42. Huang Y.J., Coustan-Smith E., Kao H.W. et al. Concordance of two approaches in monitoring of minimal residual disease in B-precursor acute lymphoblastic leukemia: Fusion transcripts and leukemia-associated immunophenotypes. J Formos Med Assoc 2017;116(10):774–81. DOI: 10.1016/j.jfma.2016.12.002.

43. Ratei R., Schabath R., Karawajew L. et al. Lineage classification of childhood acute lymphoblastic leukemia according to the EGIL recommendations: results of the ALL-BFM 2000 trial. Klin Padiatr 2013;225 Suppl 1:S34–9. DOI: 10.1055/s-0033-1337961.

44. Schultz K.R., Pullen D.J., Sather H.N. et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group(CCG). Blood 2007;109(3):926–35. DOI: 10.1182/blood-2006-01-024729.

45. Mussolin L., Pillon M., Conter V. et al. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol 2007;25(33):5254–61. DOI: 10.1200/JCO.2007.11.3159.

46. Rocha J.M., Xavier S.G., de Lima Souza M.E. et al. Current strategies for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis 2016;8(1):e2016024. DOI: 10.4084/MJHID.2016.024.

47. Ikoma M.R., Beltrame M.P., Ferreira S.I. et al. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia. Rev Bras Hematol Hemoter 2015;37(6):406–13. DOI: 10.1016/j.bjhh.2015.07.012.

48. Shaver A.C., Greig B.W., Mosse C.A., Seegmiller A.C. B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model. Am J Clin Pathol 2015;143(5):716–24. DOI: 10.1309/AJCPOOJRAVUN75GD.

49. Coustan-Smith E., Song G., Clark C. et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011;117(23):6267–76. DOI: 10.1182/blood-2010-12-324004.

50. Tupitsyn N.N., Grivtsova L.Yu., Kupryshina N.A. Flow cytometry in oncohematology. Part I. Fundamentals and innovations in the diagnosis of acute leukemia. Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskaya praktika = Clinical Oncohematology. Basic Research and Clinical Practice 2012;5(1):42–7. (In Russ.).

51. Roberts K.G., Pei D., Campana D. et al. Outcomes of children with BCR-ABL1- like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol 2014;32(27):3012–20. DOI: 10.1200/JCO.2014.55.4105.

52. Beldjord K., Chevret S., Asnafi V. et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood 2014;123(24):3739–49. DOI: 10.1182/blood-2014-01-547695.

53. Bhojwani D., Yang J.J., Pui C.H. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am 2015;62(1):47–60. DOI: 10.1016/j.pcl.2014.09.004.

54. Campana D. Molecular determinants of treatment response in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2008;366–73. DOI: 10.1182/asheducation-2008.1.366.

55. Panzer-Grümayer E.R., Schneider M., Panzer S. et al. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95(3):790–4.

56. Flohr T., Schrauder A., Cazzaniga G. et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008;22(4):771–82. DOI: 10.1038/leu.2008.5.

57. Pui C.H., Evans W.E. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol 2013;50(3):185–96. DOI: 10.1053/j.seminhematol.2013.06.007.

58. Ampatzidou M., Paterakis G., Vasdekis V. et al. Prognostic significance of flow cytometry MRD log reduction during induction treatment of childhood ALL. Leuk Lymphoma 2019;60(1):258–61. DOI: 10.1080/10428194.2018.1471603.

59. Schrappe M., Valsecchi M.G., Bartram C.R. et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118(8):2077–84. DOI: 10.1182/blood-2011-03-338707.

60. van der Velden V.H., Panzer-Grümayer E.R., Cazzaniga G et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007;21(4):706–13. DOI: 10.1038/sj.leu.2404535.

61. Conter V., Valsecchi M.G., Parasole R. et al. Childhood high-risk acute lymphoblastic leukemia in first remission: results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood 2014;123(10):1470–8. DOI: 10.1182/blood-2013-10-532598.

62. Health Quality Ontario. Minimal residual disease evaluation in childhood acute lymphoblastic leukemia: a clinical evidence review. Ont Health Technol Assess Ser 2016;16(7):1–52.

63. Sarrawi T.H., Zayyat I., Barakat F. et al. End of therapy minimal residual disease (MRD) measurement in children with ALL does not predict relapse. Hematol Oncol Stem Cell Ther 2018;11(1):41–3. DOI: 10.1016/j.hemonc.2017.05.033.

64. Chen X., Wood B.L. How do we measure MRD in ALL and how should measurements affect decisions. Re: Treatment and prognosis? Best Pract Res Clin Haematol 2017;30(3):237–48. DOI: 10.1016/j.beha.2017.07.002.

65. Tsuchida M., Ohara A., Manabe A. et al. Long-term results of Tokyo Children’s

66. Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984–1999. Leukemia 2010;24(2):383–96. DOI: 10.1038/leu.2009.260.

67. Badell I., Muñoz A., Estella J. et al. Long-term results of two consecutive trials in childhood acute lymphoblastic leukaemia performed by the Spanish Cooperative Group for Childhood Acute Lymphoblastic Leukemia Group (SHOP) from 1989 to 1998. Clin Transl Oncol 2008;10(2):117–24. DOI: 10.1007/s12094-008-0165-1.

68. Rawstron A.C., Fazi C., Agathangelidis A. et al. A complementary role of multiparameter flow cytometry and highthroughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia 2016;30(4):929–36. DOI: 10.1038/leu.2015.313.

69. An Q., Fan C.H., Xu S.M. Recent perspectives of pediatric leukemia - an update. Eur Rev Med Pharmacol Sci 2017;21(4 Suppl):31–6.

70. Kamps W.A., Veerman A.J., van Wering E.R. et al. Long-term followup of Dutch Childhood Leukemia Group (Study DCLSG) protocols for children with acute lymphoblastic leukemia, 1984–1991. Leukemia 2000;14(12):2240–6. DOI: 10.1038/sj.leu.2401964.

71. Möricke A., Zimmermann M., Reiter A. et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24(2):265–84. DOI: 10.1038/leu.2009.257.

72. Shervashidze M.A., Valiev T.T., Tupitsyn N.N. Prospects for evaluation of the minimal residual disease in the post-induction period in pediatric B-precursor acute lymphoblastic leukemia. Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology 2020;(2):15–22. (In Russ.).


Review

For citations:


Shervashidze M.A., Valiev T.T. Pediatric acute lymphoblastic leukemia treatment protocols improvement: emphasis on minimal residual disease. Oncohematology. 2020;15(3):12-26. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-3-12-26

Views: 9648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)