Translocation t(1;11)(p32;q23) with MLL-EPS15 fusion gene formation in acute leukemias: a review and 6 new case reports. Approaches to minimal residual disease monitoring
https://doi.org/10.17650/1818-8346-2013-8-1-17-32
Abstract
We performed clinical and laboratory characterization of patients with rare translocation t(1;11)(p32;q23) leading to MLL-EPS15 fusion gene formation. Study cohort consisted of 33 primary acute leukemia (AL) cases including 6 newly diagnosed and 27 patients previously described in literature. Among study group patients t(1;11)(p32;q23) was found most frequently in infant AL cases (median age 8 months). In acute lymphoblastic leukemia (ALL) male/female ratio was 1:3, in acute myeloid leukemia (AML) it was 1:1. Additional cytogenetic aberrations in 38 % of patients were revealed. The most frequent breakpoint position in EPS15 gene was intron 1. Four different types of MLLEPS15 fusion gene transcripts were detected. Primers-probe-plasmid combination for MLL-EPS15 fusion gene transcript monitoring by realtime quantitative polymerase chain reaction (RQ-PCR) was developed and successfully applied. In 3 patients RQ-PCR was done on genomic DNA for absolute quantification of MLL-EPS15 fusion gene. High qualitative concordance rate (92 %) was noted between minimal residual disease data obtained in cDNA and genomic DNA for MLL-EPS15 fusion detection.
About the Authors
G. A. TsaurRussian Federation
A. M. Popov
Russian Federation
O. M. Plekhanova
Russian Federation
A. M. Kustanovich
Russian Federation
O. V. Aleynikova
Russian Federation
T. L. Gindina
Russian Federation
A. S. Demina
Russian Federation
A. Ye. Druy
Russian Federation
S. Yu. Kovalev
Russian Federation
K. L. Kondratchik
Russian Federation
A. V. Misyurin
Russian Federation
N. V. Myakova
Russian Federation
T. O. Riger
Russian Federation
L. I. Savelyev
Russian Federation
O. I. Sokova
Russian Federation
O. V. Streneva
Russian Federation
M. V. Suchkova
Russian Federation
Yu. P. Finashutina
Russian Federation
Ye. V. Fleyshman
Russian Federation
Ye. V. Shorikov
Russian Federation
R. I. Yutskevich
Russian Federation
C. Meyer
Russian Federation
R. Marschalek
Russian Federation
L. G. Fechina
Russian Federation
References
1. Armstrong S., Look A. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005;23:6306–15.
2. Schoch C., Schnittger S., Klaus M. et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic
3. impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003;102:2395–402.
4. Meyer С., Kowarz E., Hofmann J. et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009;23:1490–9.
5. Harrison C., Cuneo A., Clark R. et al. Ten novel 11q23 chromosomal partner sites. Leukemia 1998;12:811–22.
6. Williams D., Look A., Melvin S. et al. New chromosomal translocations correlate with specific lmmunophenotypes of childhood acute lymphoblastic leukemia. Cell 1984;36:101–9.
7. Kaneko Y., Maseki N., Takasaki N. et al. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood 1986;67:484–91.
8. Gregoire M., Peeters M., Bene M. et al. K lymphoblastic leukemia. Haematol Blood Transfus 1987;30:504–8.
9. Selypes A., László A. A new translocation t(1;4;11) in congenital acute nonlymphocytic leukemia (acute myeloblastic leukemia). Hum Genet 1987;76:106–8.
10. Hagemeijer A., van Dongen J., Slater R. et al. Characterization of the blast cells in acute leukemia with translocation (4;11): report of eight additional cases and of one case with a variant translocation. Leukemia 1987;1:24–31.
11. Raimondi S., Peiper S., Kitchingman G. et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood 1989;73:1627–34.
12. Shippey C., Lawlor E., Secker-Walker L. Isochromosome 9q in acute lymphoblastic leukemia: a new non-random finding. Leukemia 1989;3:195–9.
13. Abshire T., Buchanan G., Jackson J. et al. Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 1992;6:357–62.
14. Bernard O., Mauchauffe M., Mecucci C. et al. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 1994;9: 1039–45.
15. Felix C., Hosler M., Slater D. et al. MLL genomic breakpoint distribution within the breakpoint cluster region in de novo leukemia in children. J Pediatr Hematol Oncol 1998;20:299–308.
16. Bergh von A., Emanuel B., Zelderen-Bhola van S. et al. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias. Genes
17. Chromosomes and Cancer 2000;28:14–22.
18. Chessells J., Harrison C., Kempski H. et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party.Leukemia 2002;16:776–84.
19. Park K., Lee D., Lee H. et al. Granulocytic Sarcoma in MLL-Positive Infant Acute Myelogenous Leukemia: Fluorescence in Situ Hybridization Study of Childhood Acute Myelogenous Leukemia for
20. Detecting MLL Rearrangement. Am J Pathol 2001;159(6):2011–6.
21. Kim H., Cho H., Kim E. et al. A study on 289 consecutive Korean patients with acute leukaemias revealed fluorescence in situ hybridization detects the MLL translocation without cytogenetic evidence both initially and during follow-up. Br J Haematol 2002;119(4):930–9.
22. Douet-Guilbert N., Morel F., Le Bris M. et al. Rearrangement of the MLL gene in acute myeloblastic leukemia: report of two rare translocations. Cancer Genet Cytogenet2005;157:169–74.
23. Sagawa M., Shimizu T., Shimizu T. et al. Establishment of a new human acute monocytic leukemia cell line TZ-1 with t(1;11)(p32;q23) and fusion gene MLLEPS15. Leukemia 2006;20:1566–71.
24. Kotecha R., Ford J., Beesley A. et al. Molecular characterization of identical, novel MLL-EPS15 translocation and individual genomic copy number alterations in monozygotic infant twins with acute
25. lymphoblastic leukemia. Haematologica 2012;97:1447–50.
26. Kotecha R., Murch A. Kees U., Cole C. Pre-natal, clonal origin of t(1;11)(p32;q23) acute lymphoblastic leukemia in monozygotic twins. Leuk Res 2012;36:46–50. 23. Nakamura H., Hata T., Tagawa M. et al. Chromosome 1 abnormalities at band 1p32in two atomic bomb survivors with myelodysplastic syndrome. Rinsho Ketsueki 2000;41:152–8.
27. http://www.genecards.org/cgi-bin/ carddisp.pl?gene=EPS15.25. http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000085832; r=1:51819935-51985000.
28. Su A., Wiltshire T., Batalov S. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004;101:6062–7.
29. Salcini A., Chen H., Iannolo G. et al. Epidermal growth factor pathway substrate 15, Eps15. Int J Biochem Cell Biol 1999;31:805–9.
30. Parachoniak C., Park M. Distinct recruitment of Eps15 via its coiled-coil domain is required for efficient down-regulation of the MET receptor tyrosine kinase. J Biol Chem 2009;284(13):8382–94.
31. Hess J. MLL: a histone methyltransferase disrupted in leukemia. Trends in Molecular Medicine 2004;10(10):500–7.
32. Slany R. The molecular biology of mixed lineage leukemia. Haematol 2009;94:984–93.
33. Armstrong S., Staunton J., Silverman L. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–7.
34. Ferrando A., Armstrong S., Neuberg D. et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregu lation. Blood 2003;102:262–8.
35. Yeoh E., Ross M., Shurtleff S. et al. Classification, subtype discovery, and prediction of out-come in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133–43.
36. Ayton P., Cleary M. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes and Development 2003;17:2298–307.
37. Trentin L., Giordan M., Dingermann Th. et al. Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients. Euro J Haematol 2009;83:406–19.
38. Pallisgaard N., Hokland P., Riishoj D. et al. Multiplex reverse transcriptionpolymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 1998;92:574–88.
39. Dongen van J., Macintyre E., Gabert J. et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 1999;13:1901–18.
40. Fechina L., Shorikov E., Tsaur G. et al. Contribution of all-trans retinoic acid to improved early relapse-free outcome in infant acute lymphoblastic leukemia comparing to the chemotherapy alone.
41. Blood 2007;110(11):832А; abstr. 2828.
42. ISCN 1995: An International System for Human Cytogenetic Nomenclature (1995). Ed. Mitelman F. Basel: S. Karger, 1995.
43. ISCN 2005: An International System For Human Cytogenetic Nomenclature (2005). Eds.: Shaffer L., Tommerup N. Basel: S. Karger, 2005.
44. ISCN 2009: An International System For Human Cytogenetic Nomenclature (2009). Eds.: Schaffer L., Slovak M., Campbell L. Basel: S. Karger, 2009.
45. Coenen E., Raimondi S., Harbott J. et al. Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL -rearranged AML patients: results of an international study. Blood 2011;117:7102–11.
46. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Eds.: Swerdlow S., Campo E., Harris N. et al. Lyon, France: IARC, 2008.
47. Betts D., Ammann R., Hirt A. et al. The prognostic significance of cytogenetic aberrations in childhood acute myeloid leukaemia. A study of the Swiss Paediatric Oncology Group (SPOG). Eur J Haematol 2007;78(6):468–76.
48. Meyer C., Schneider B., Reichel M. et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA2005;102(2):449–54.
49. Цаур Г.А., Наседкина Т.В., Попов А.М. и др. Время достижения молекулярной ремиссии как фактор прогноза у детей первого года жизни острым лимфобластным лейкозом. Онкогематол 2010;2:46–54.
50. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у пациентов с онкологическими и онкогематологическими заболеваниями. Вестн Урал мед акад науки 2011;4:107–11.
51. Gabert J., Beillard E., Velden van der V. et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer Program. Leukemia 2003;17:2318–57.
52. Beillard E., Pallisgaard N., Velden van der V. et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe Against Cancer Program. Leukemia
53. ;17:2474–86.
54. Burmeister T., Marschalek R., Schneider B. et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia 2006;20:451–7.
55. Velden van der V., Cazzaniga G., Schrauder A. et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data.
56. Leukemia 2007;21:604–11.
57. Kaplan E., Meier P. Non-parametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–81.
58. Nilson I., Loechner K., Siegler G. et al. Exon/intron structure of ALL1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukemias. Br J Haematol 1996;94(4):966–72.
59. Mitelman database of chromosome aberrations and gene fusions in cancer (2012). Mitelman F., Johansson B. Mertens F. (eds.). http://cgap.nci.nih.gov/ Chromosomes/Mitelman.
60. Huret J.-L. t(1;11)(p32;q23). Atlas Genet Cytogenet Oncol Haematol (September 2010). http://
61. AtlasGeneticsOncology.org/Anomalies/t0111p32q23ID1046.html.
62. Chowdhury T., Brady H. Insights from clinical studies into the role of the MLL gene in infant and childhood leukemia. Blood Cells Mol Dis 2008;40:192–9.
63. Forestier E., Schmiegelow K. The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. J Pediatr Hematol Oncol 2006;28:486–95.
64. Zweidler-McKay P., Hilden J. The ABCs of Infant Leukemia. Curr Probl Pediatr Adolesc Health Care 2008;38(3):78–94.
65. Цаур Г.А., Флейшман Е.В., Гиндина Т.Л. и др. Характеристика перестроек 11q23/MLL при остром миелоидном лейкозе у детей первого года жизни. Клин онкогематол 2012;5(4):365–71.
66. Цаур Г.А., Попов А.М., Алейникова О.В. и др. Характеристика перестроек 11q23 (MLL) у детей первого года жизни с острым лимфобластнымлейкозом. Онкогематол 2011;3:57–64.
67. Meyer C., Schneider B., Jakob S. et al. The MLL recombinome of acute leukemias. Leukemia 2006;20:777–84.
68. Цаур Г.А., Попов А.М., Наседкина Т.В. и др. Прогностическое значение минимальной остаточной болезни, определенной путем выявления химерных транскриптов у детей первого года жизни,
69. больных острым лимфобластным лейкозом, получающих терапию по протоколу MLL-BABY. Гематол и трансфузиол 2012;57(4):12–22.
70. Jansen M., Corral L., Velden van der V. et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007;21:633–41.
71. Peham M., Panzer S., Fasching K. et al. Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Br J Haematol 2002;117:315–21.
72. De Zen L., Bicciato S., te Kronnie G., Basso G. Computational analysis of flowcytometry antigen expression profiles in childhood acute lymphoblastic leukemia: an MLL/AF4 identification. Leukemia
73. ;17:1557–65.
74. Schwartz S., Rieder H., Schlaeger B. et al. Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(-)/CD24(-)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia 2003;17:1589–95.
75. Attarbaschi A., Mann G., König M. et al. Mixed lineage leukemia-rearranged childhood pro-B and CD10-negative pre-B acute lymphoblastic leukemia constitute a distinct clinical entity. Clin Cancer Res 2006;12:2988–94.
76. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Особенности мониторинга минимальной остаточной болезни при B-линейных острых лимфобластных лейкозах методом проточной цитометрии у детей первого года жизни. Дет онкол 2008;2:32–5.
77. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Возможности применения NG2 для мониторинга минимальной остаточной болезни методом проточной цитометрии у детей первого года жизни
78. с острым лимфобластным лейкозом, ассоциированным с реарранжировками гена MLL. Гематол и трансфузиол 2009;6:19–22.
79. Velden van der V., Сorral L. Valsecchi M. et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant- 99 protocol. Leukemia 2009;23:1073–9.
80. Jansen M., Velden van der V., Dongen van J. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and
81. LightCycler. Leukemia 2005;19(11):2016–18.
82. Szczepanski T. Why and how to quantify minimal residual disease in acute lymphoblastic leukaemia. Leukemia 2007;21:622–6
Review
For citations:
Tsaur G.A., Popov A.M., Plekhanova O.M., Kustanovich A.M., Aleynikova O.V., Gindina T.L., Demina A.S., Druy A.Ye., Kovalev S.Yu., Kondratchik K.L., Misyurin A.V., Myakova N.V., Riger T.O., Savelyev L.I., Sokova O.I., Streneva O.V., Suchkova M.V., Finashutina Yu.P., Fleyshman Ye.V., Shorikov Ye.V., Yutskevich R.I., Meyer C., Marschalek R., Fechina L.G. Translocation t(1;11)(p32;q23) with MLL-EPS15 fusion gene formation in acute leukemias: a review and 6 new case reports. Approaches to minimal residual disease monitoring. Oncohematology. 2013;8(1):17-32. (In Russ.) https://doi.org/10.17650/1818-8346-2013-8-1-17-32