Preview

Oncohematology

Advanced search

Subpopulations of mobilized hematopoietic stem cells in patients with hematological malignances and donors: expression of CD38, HLA-DR and CD143

https://doi.org/10.17650/1818-8346-2019-14-2-48-58

Abstract

The study objective is to investigate the features of subpopulational composition of mobilized hematopoietic stem cells in peripheral blood (PB) and leukocyte concentrates (LC) in adult patients with oncohematological pathology and donors.

Materials and methods. In 80 patients with hemoblastoses, expression of CD38, HLA-DR and CD143 (angiotensin-converting enzyme) was measured in PB and LC CD34+CD45low cells. The control group included 10 PB and 14 LC samples from healthy donors. Analysis of PB was performed prior to mobilization of hematopoietic stem cells (HSC) and on the day of leukapheresis prior to HSC collection. LC samples were examined at day 1 after HSC collection.

Results. CD143 is expressed on CD34+CD45low cells both prior to mobilization and after it in all patients and donors, but CD34+CD45lowCD143+ cell counts varied depending on diagnosis and mobilization regimen. CD143+ expression on CD34+CD45low cells was significantly higher in patients who received combination of chemotherapy and granulocyte colony-stimulating factor compared to donors and patients with multiple myeloma who received only granulocyte colony-stimulating factor. Along with elevated CD34+CD45low cell count after hematopoiesis stimulation, CD34+CD45lowCD143+ cell counts also increased. It was shown that mobilized HSC almost completely lacks a fraction of early CD34+CD45low progenitor cells not expressing CD38, HLA-DR. Prior to hematopoiesis stimulation among CD34+CD45low cells, CD38+HLADR–cell fractions are prevalent, but after mobilization CD38–HLA-DR+ cell counts increased. No differences between CD34+CD45lowCD143+cell counts in patients with multiple myeloma depending on disease status, sex, age or number of chemotherapy courses prior to HSC mobilizationwere observed.

Conclusion. Expression of angiotensin-converting enzyme on CD34+ cells in PB before and after HSC mobilization and in LC was observed. The cell counts varied depending on diagnosis and mobilization regimen.

About the Authors

M. L. Kanaeva
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


I. V. Galtseva
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


E. N. Parovichnikova
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


Yu. O. Davydova
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


T. V. Gaponova
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


E. O. Gribanova
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


Ya. V. Balzhanova
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


L. A. Kuzmina
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


V. V. Troitskaya
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


S. K. Kravchenko
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


E. E. Zvonkov
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


L. P. Mendeleeva
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


V. G. Savchenko
National Research Center for Hematology, Ministry of Health of Russia
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167, Russia


References

1. Shpall E.J., Champlin R., Glaspy J.A. Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transplant 1998;4(2): 84–92. DOI: 10.1053/bbmt.1998.v4.

2. Civin C.I., Strauss L.C., Brovall C. et al. Antigenic analysis of hematopoiesis III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984;133(1):157–64.

3. Siena S., Bregni M., Brando B. et al. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high dose cyclophosphamide treated patients: enhancement by intravenous recombinant human granulocyte macrophage colony stimulating factor. Blood 1989;74:1905–14.

4. Shpall E.J., Champlin R., Glaspy J.A. Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transplant 1998;4(2): 84–92. DOI: 10.1053/bbmt.1998.v4.

5. Allan D.S., Keeney M., Howson-Jan K. et al. Number of viable CD34+ cells rein fused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transpl 2002;29:967–72. DOI: 10.1038/sj.bmt.1703575.

6. Siena S., Bregni M., Brando B. et al. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high dose cyclophosphamide treated patients: enhancement by intravenous recombinant human granulocyte macrophage colony stimulating factor. Blood 1989;74:1905–14.

7. Thomas M.L. The leukocyte common antigen family. Rev Immunol 1989;7:339–69. DOI: 10.1146/annurev.iy.07.040189.002011.

8. Allan D.S., Keeney M., Howson-Jan K. et al. Number of viable CD34+ cells rein fused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transpl 2002;29:967–72. DOI: 10.1038/sj.bmt.1703575.

9. Allan D.S., Keeney M., Howson-Jan K. et al. Number of viable CD34+ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transpl 2002;29;967–72. DOI: 10.1038/sj.bmt.1703575.

10. Thomas M.L. The leukocyte common antigen family. Rev Immunol 1989;7:339–69. DOI: 10.1146/annurev.iy.07.040189.002011.

11. Brandt J., Baird N., Lu L. et al. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro. Clin Invest 1988;82(3):1017–23. DOI: org/10.1172/JCI113658.

12. Allan D.S., Keeney M., Howson-Jan K. et al. Number of viable CD34+ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transpl 2002;29;967–72. DOI: 10.1038/sj.bmt.1703575.

13. Issaad C., Croisille L., Katz A. et al. A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38– progenitor cells in longterm cultures and semisolid assays. Blood 1993;81(11):2916–24.

14. Brandt J., Baird N., Lu L. et al. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro. Clin Invest 1988;82(3):1017–23. DOI: org/10.1172/JCI113658.

15. Srour E.F., Brandt J.E., Briddell R.A. et al. Human CD34’ HLA-DR-bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 1991;17(2):287–95.

16. Issaad C., Croisille L., Katz A. et al. A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38– progenitor cells in longterm cultures and semisolid assays. Blood 1993;81(11):2916–24.

17. Paul M., Mehr A.P., Kreutz R. Physiology of local renin-angiotensin systems. Physiol 2006;86(3):787–803. DOI: 10.1152/physrev.00036.2005.

18. Srour E.F., Brandt J.E., Briddell R.A. et al. Human CD34’ HLA-DR-bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 1991;17(2):287–95.

19. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002;532(1–2):107–10.

20. Paul M., Mehr A.P., Kreutz R. Physiology of local renin-angiotensin systems. Physiol 2006;86(3):787–803. DOI: 10.1152/physrev.00036.2005.

21. Jokubaitis V.J., Sinka L., Driessen R. et al. Angiotensin converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal and adult hematopoietic tissues. Blood 2008;111(8):4055–63. DOI: 10.1182/blood-2007-05-091710.

22. Dercksen M.W., Rodenhuis S., Dirkson M.K. et al. Subset of CD34+ cells and rapid hematopoietic recovery after peripheral blood stem cell transplantation. J Clin Oncol 1995;13:1922–32. DOI: 10.1200/JCO.1995.13.8.1922.

23. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002;532(1–2):107–10.

24. Brandt J., Briddell R.A., Srour E.F. et al. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 1992;79:634–41.

25. Jokubaitis V.J., Sinka L., Driessen R. et al. Angiotensin converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal and adult hematopoietic tissues. Blood 2008;111(8):4055–63. DOI: 10.1182/blood-2007-05-091710.

26. Won E.J., Kim H.R., Park R.Y. et al. Direct confirmation of quiescence of CD34+CD38– leukemia stem cell populations using single cell culture, their molecular signature and clinicopathological implications. BMC Cancer 2015;15:217–21. DOI: 10.1186/s12885-015-1233-x.

27. Dercksen M.W., Rodenhuis S., Dirkson M.K. et al. Subset of CD34+ cells and rapid hematopoietic recovery after peripheral blood stem cell transplantation. J Clin Oncol 1995;13:1922–32. DOI: 10.1200/JCO.1995.13.8.1922.

28. Rusten L.S. Functional differences between CD38– and DR– subfractions of CD34+ bone marrow cells. Blood 1994;84(5):1473–81.

29. Brandt J., Briddell R.A., Srour E.F. et al. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 1992;79:634–41.

30. Huang S., Terstappen L.W. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 1992;360(6406):745–9. DOI: 10.1038/360745a0.

31. Won E.J., Kim H.R., Park R.Y. et al. Direct confirmation of quiescence of CD34+CD38– leukemia stem cell populations using single cell culture, their molecular signature and clinicopathological implications. BMC Cancer 2015;15:217–21. DOI: 10.1186/s12885-015-1233-x.

32. Huang S., Terstappen L.W. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR–, CD38– hematopoietic stem cells. Blood 1994;83(6):1515–26.

33. Rusten L.S. Functional differences between CD38– and DR– subfractions of CD34+ bone marrow cells. Blood 1994;84(5):1473–81.

34. Grivtsova L.Yu., Tupitsyn N.N. Subpopulations of transplantable hematopoietic stem cells. Sovremennaya onkologiya = Contemporary Oncology 2006;1:43–8. (In Russ.)].

35. Huang S., Terstappen L.W. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 1992;360(6406):745–9. DOI: 10.1038/360745a0.

36. Galtseva I.V., Davydova Yu.O., Gaponova T.V. et al. The absolute number of CD34+ hematopoietic stem cells in the peripheral blood before the leukapheresis procedure as a parameter predicting the efficiency of stem cell collection. Terapevticheskiy arkhiv = Therapeutic Archives 2017;89(7):18–24. (In Russ.). DOI: 10.17116/terarkh201789718-24.

37. Huang S., Terstappen L.W. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR–, CD38– hematopoietic stem cells. Blood 1994;83(6):1515–26.

38. Haznedaroğlu I.C., Tuncer S., Gürsoy M. A local renin-angiotensin system in the bone marrow. Med Hypotheses 1996;46(6):507–10.

39. Grivtsova L.Yu., Tupitsyn N.N. Subpopulations of transplantable hematopoietic stem cells. Sovremennaya onkologiya = Contemporary Oncology 2006;1:43–8. (In Russ.)].

40. Hubert C., Savary K., Gasc J.M. et al. The hematopoietic system: a new niche for the renin-angiotensin system. Nat Clin Pract Cardiovasc Med 2006;3(2):80–5. DOI: 10.1038/ncpcardio0449.

41. Galtseva I.V., Davydova Yu.O., Gaponova T.V. et al. The absolute number of CD34+ hematopoietic stem cells in the peripheral blood before the leukapheresis procedure as a parameter predicting the efficiency of stem cell collection. Terapevticheskiy arkhiv = Therapeutic Archives 2017;89(7):18–24. (In Russ.). DOI: 10.17116/terarkh201789718-24.

42. Zambidis E.T., Park T.S., Yu W. et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 2008;112(9):3601–14. DOI: 10.1182/blood-2008-03-144766.

43. Haznedaroğlu I.C., Tuncer S., Gürsoy M. A local renin-angiotensin system in the bone marrow. Med Hypotheses 1996;46(6):507–10.

44. Hubert C., Savary K., Gasc J.M. et al. The hematopoietic system: a new niche for the renin-angiotensin system. Nat Clin Pract Cardiovasc Med 2006;3(2):80–5. DOI: 10.1038/ncpcardio0449.

45. Zambidis E.T., Park T.S., Yu W. et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 2008;112(9):3601–14. DOI: 10.1182/blood-2008-03-144766.


Review

For citations:


Kanaeva M.L., Galtseva I.V., Parovichnikova E.N., Davydova Yu.O., Gaponova T.V., Gribanova E.O., Balzhanova Ya.V., Kuzmina L.A., Troitskaya V.V., Kravchenko S.K., Zvonkov E.E., Mendeleeva L.P., Savchenko V.G. Subpopulations of mobilized hematopoietic stem cells in patients with hematological malignances and donors: expression of CD38, HLA-DR and CD143. Oncohematology. 2019;14(2):48-58. (In Russ.) https://doi.org/10.17650/1818-8346-2019-14-2-48-58

Views: 9774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)