Preview

Oncohematology

Advanced search

EXPRESSION FEATURES OF ANTIGENS INVOLVED IN THE FORMATION OF IMMUNOLOGICAL SYNAPSE IN CHRONIC LYMPHOCYTIC LEUKEMIA

https://doi.org/10.17650/1818-8346-2018-13-1-103-114

Abstract

Background. Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease that manifests by the accumulation of tumor monoclonal B-lymphocytes in the bone marrow, peripheral blood and secondary lymphoid organs. Recently it was found that CLL cells are able to form immunological synapses with microenvironment cells, directly and indirectly affecting their function. Therefore, it became clear that the pathogenesis of CLL is not only escape of apoptosis but also the ability of CLL cells to cause T-lymphocyte anergy, thereby avoiding immune surveillance.

Objective: to study the expression of FAS, co-stimulatory molecules CD80 and CD86, PD-1, PD-L1 on CLL cells, and also to study the basic subpopulations of T-cells (naїve, memory, effector cells).

Materials and methods. The study included 46 CLL patients: 16 patients with disease progression after chemotherapy and 30 patients with newly diagnosed CLL. “Primary” patients are categorized according to J. Binet’s CLL stages. Stage A was established in 14 patients, B – 10, C – 6. The control group included 29 healthy donors. Peripheral blood was used as a material for analysis. The study was performed on a 6-color flow cytometer BD FACS Canto II (BD Biosciences, USA).

Results. In CLL patients, the proportion of CD80+, CD86+, FAS+ B-cells was significantly lower than in donors. In “primary” patients the proportion of CD80 + CLL cells was higher than in patients with CLL progression. Among “primary” patients the proportion of CD80+ and CD86+ was lower in advanced stages of the disease. In patients with CLL progression the proportion of FAS+ B cells was higher than in “primary” patients. The proportion of PD-1+ B cells in CLL patients was higher than in donors and “primary” patients. The proportion of PD-1+ tumor cells was significantly lower in advanced stages of the disease. The proportion of PD-L1+ B cells in CLL patients was lower than in donors. Among the “primary” patients, the proportion of PD-L1+ B-lymphocytes was higher in stage A. The proportion of PD-1+ Thelpers was higher in CLL patients than in donors, and among “primary” patients it was higher in advanced stages of the disease. The proportion of PDL1+ T-helpers and cytotoxic T-cells in CLL patients was lower than in donors. The proportion of naїve cells (CD95-CD28+) in patients compared with donors was lower and the proportion of effector cells (CD95+ CD28–), memory cells (CD95 + CD28 +) was higher, a proportion of CD8+ memory T-cells was higher among patients in the advanced stage of CLL.

Conclusion. Therefore, a decline the CD80/CD86+ B-cells in CLL can cause ineffectiveness of an immunological synapse between tumor cells and T-cells, which leads to anergy of T-lymphocytes. Decline expression of the FAS receptor allows tumor CLL cells to avoid FAS-mediated apoptosis. A change in the T-cell pool toward memory cells and effectors, the acquisition of a CD4+PD-1+ (“exhausted”) phenotype impaired antitumor immunity and possible leads to disease progression.

About the Authors

D. S. Badmazhapova
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


I. V. Galtseva
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


E. Е. Zvonkov
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


Yu. O. Davydova
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


N. M. Kapranov
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


N. G. Chernova
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


N. G. Gabeeva
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


T. N. Moiseeva
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


A. M. Kovrigina
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


V. N. Dvirnyk
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


U. L. Dzhulakyan
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


E. N. Parovichnikova
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


V. G. Savchenko
National Research Center for Hematology
Russian Federation
4 Noviy Zykovskiy proezd, Moscow 125167


References

1. Hallek M., Cheson B. D., Catovsky D. et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute – Working Group 1996 guidelines. Blood 2008;111(12):5446–56. DOI: 10.1182/blood-2007‑06‑093906. PMID: 11492984.

2. Eichhorst B., Robak T., Montserrat E. et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26(Suppl 5):v78–v84. DOI: 10.1093/annonc/mdv303. PMID: 26314781.

3. Vladimirova R., Popova D., Vikentieva E., Guenova M. Chronic Lymphocytic Leukemia – Microenvironment and B Cells. In: Leukemias – Updates and New Insights. Ed.: M. Guenova, G. Balatzenko, 2015. InTech. DOI: 10.5772/60761.

4. Mellor A. L., Munn D. H. Tryptophan Catabolism and Regulation of Adaptive Immunity. J Immunol 2003;170(12):5809–13. DOI: 10.4049/jimmunol.170.12.5809. PMID: 12794104.

5. Burger J. A., Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2014;34(12):592–601. DOI: 10.1016/j.it.2013.07.002. PMID: 23928062.

6. Han T. T., Fan L., Li J-Y. et al. Role of chemokines and their receptors in chronic lymphocytic leukemia. Cancer Biol Ther 2014;15(1):3–9. DOI: 10.4161/cbt.26607. PMID: 24149438.

7. Burger J. A. Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012;24(6):643–9. DOI: 10.1097/CCO.0b013e3283589950. PMID: 22960555.

8. Kazanskiy D. B. Tlymphocytes in development of chronic lymphocytic leukemia. Klinicheskaya onkogematologiya = Clinical oncohematology 2012;5(2):85–95. (In Russ.).

9. Qorraj M., Böttcher M., Mougiakakos D. PD-L1/PD-1: new kid on the “immune metabolic” block. Oncotarget 2017;8(43):73364–5. DOI: 10.18632/oncotarget.20639. PMID: 29088710.

10. Kirkwood J. M., Tarhini A. A., Panelli M. C. et al. Next generation of immunotherapy for melanoma. J Clin Oncol 2008;26(20):3445–55. DOI: 10.1200/JCO.2007.14.6423. PMID: 18612161.

11. Dunn G. P., Bruce A. T., Ikeda H. et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3(11):991–8. DOI: 10.1038/ni1102–991. PMID: 12407406.

12. Pizzi M., Boi M., Bertoni F., Inghirami G. Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia 2016;30(9):1805–15. DOI: 10.1038/leu.2016.161. PMID:27389058.

13. Freeman G. J., Long A. J., Iwai Y. et al. Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J Exp Med 2000;192(7):1027–34. DOI: 10.1084/jem.192.7.1027. PMID: 11015443.

14. Dong H., Zhu G., Tamada K. et al. B7H1, a third member of the B7 family, costimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5(12):1365–9. DOI: 10.1038/70932. PMID:10581077.

15. Upadhyay R., Hammerich L., Peng P. et аl. Lymphoma: Immune evasion strategies. Cancers (Basel) 2015;7(2):736–62. DOI: 10.3390/cancers7020736. PMID: 25941795

16. Brahmer J. R., Drake C. G., Wollner I. et al. Phase I study of single-agent antiprogrammed death-1(MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010;28(19):3167–75. DOI: 10.1200/JCO.2009.26.7609. PMID: 20516446.

17. Xia Y., Jeffrey Medeiros L., Young K. H. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta 2016;1865(1):58–71. DOI: 10.1016/j.bbcan. 2015.09.002. PMID: 26432723

18. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood 2015;125(22):3393–401. DOI: 10.1182/blood-2015‑02‑567453. PMID:26637703.

19. Mahnke Y. D., Brodie T. M., Sallusto F. et al. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur J Immunol 2013;43(11):2797–809. DOI: 10.1002/eji.201343751. PMID: 24258910.

20. Xu-Monette Z. Y., Zhou J., Young K. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood 2018;131(1):68–83. DOI: 10.1182/blood-2017‑07‑740993. PMID: 29118007.

21. Greaves P., Gribben J. G. The role of B7 family molecules in hematologic malignancy. Blood 2013;121(5):734–44. DOI: 10.1182/blood-2012‑10‑385591. PMID: 23223433.

22. Vyth-Dreese F. A., Boot H., Dellemijn T. A. et al. Localization in situ of costimulatory molecules and cytokines in B-cell nonHodgkin’s lymphoma. Immunology 1998;94(4):580–6. DOI: 10.1046/j.1365-2567.1998.00550.x. PMID: 9767448.

23. Dakappagari N., Ho S. N., Gascoyne R. D. et al. CD80(B7.1) is expressed on both malignant B cells and nonmalignant stromal cells in non-Hodgkin lymphoma. Cytometry B Clin Cytom 2012;82(2):112–9. DOI: 10.1002/cyto.b.20631. PMID: 22076940.

24. Suvas S., Singh V., Sahdev S. et al. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem 2002;277(10):7766–75. DOI: 10.1074/jbc.M105902200. PMID: 11726649.

25. Ramsay A. G., Johnson A. J., Lee A. M. et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation. J Clin Invest 2008; 118(7):2427–37. DOI: 10.1172/JCI35017. PMID: 18551193.

26. Williams J. F., Petrus M. J., Wright J. A. et al. Fas-mediated lysis of chronic lymphocytic leukaemia cells: Role of type I versus type II cytokines and autologous FasL-expressing T cells. Br J Haematol 1999;107(1):99–105. DOI: 10.1046/j.1365-2141.1999.01670.x. PMID: 10520029.

27. Schattner E. J. CD40 ligand in CLL pathogenesis and therapy. Leuk Lymphoma 2000;37(5–6):461–72. DOI: 10.3109/10428190009058499. PMID: 11042507.

28. Agata Y., Kawasaki A., Nishimura H. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996;8(5):765–72. DOI: 10.1093/intimm/8.5.765. PMID: 8671665.

29. Ishida Y., Agata Y., Shibahara K. et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11(11):3887–95. DOI: 10.1128/MCB.25.21.9543. PMID: 1396582.

30. Chang T. T., Kuchroo V. K., Sharpe A. H. Role of the B7-CD28 / CTLA-4 Pathway. Curr Dir Autoimmun 2002;5(I):113–30. DOI: 10.1159/000060550. PMID:11826754.

31. Thibult M.-L., Mamessier E., GertnerDardenne J. et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol 2013;25(2):129–37. DOI: 10.1093/intimm/dxs098. PMID: 23087177.

32. Grzywnowicz M., Karabon L., Karczmarczyk A. et al. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma 2015;56(10):2908–13. DOI: 10.3109/10428194.2015.1017820. PMID: 25682964.

33. Lee J., Liu J., Speir E. et al. DNA Hypomethylation Leads to Aberrant Expression of PD-1 in Chronic Lymphocytic Leukemia. Blood 2012;120:3504. Abstr. 3504.

34. Li J., Pang N., Zhang Z. PD-1/PD-L1 expression and its implications in patients with chronic lymphocytic leukemia. Zhonghua Xue Ye Xue Za Zhi 2017;38(03):198–203. [Article in Chinese, Abstract in English]. DOI: 10.3760/cma.j.issn.0253–2727.2017.03.005. PMID: 28395442.

35. Pfister G., Weiskopf D., Lazuardi L. et al. Naïve T cells in the elderly: Are they still there? Ann N Y Acad Sci 2006;1067(1): 152–57. DOI: 10.1196/annals.1354.018. PMID: 16803980.

36. Hofbauer J. P., Heyder C., Denk U. et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia 2011;25(9):1452–8. DOI: 10.1038/leu.2011.111. PMID: 21606964.

37. Walton J. A., Lydyard P. M., Nathwani A. et al. Patients with B cell chronic lymphocytic leukaemia have an expanded population of CD4+ perforin expressing T cells enriched for human cytomegalovirus specificity and an effector-memory phenotype. Br J Haematol 2010;148(2): 274–84. DOI: 10.1111/j.1365-2141.2009.07964.x. PMID: 19895614.

38. Nunes C., Wong R., Mason M. et al. Expansion of a CD8+PD-1+ replicative senescence phenotype in early stage CLL patients is associated with inverted CD4: CD8 ratios and disease progression. Clin Cancer Res 2012;18(3):678–87. DOI: 10.1158/1078-0432.CCR-11-2630. PMID: 22190592.

39. Ramsay A. G., Clear A. J., Fatah R. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide. Blood 2013;120(7):1412–21. DOI: 10.1182/blood-2012‑02‑411678. PMID: 22547582.

40. Riches J. C., Davies J. K., McClanahan F. et al. T cells from CLLpatients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013;121(9):1612–21. DOI: 10.1182/blood-2012‑09‑457531. PMID: 23247726.

41. Brown J. A., Dorfman D. M., Ma F.-R. et al. Blockade of Programmed Death-1 Ligands on Dendritic Cells Enhances T Cell Activation and Cytokine Production. J Immunol 2003;170(3):1257–66. DOI: 10.4049/jimmunol.170.3.1257. PMID: 12538684.

42. Duraiswamy J., Ibegbu C. C., Masopust D. et al. Phenotype, function, and gene expression profiles of programmed death1(hi) CD8 T cells in healthy human adults. J Immunol 2011;186(7):4200–12. DOI: 10.4049/jimmunol.1001783. PMID: 21383243.

43. Rosignoli G., Lim C. H., Bower M. et al. Programmed death (PD) – 1 molecule and its ligand PD-L1 distribution among memory CD4 and CD8 T cell subsets in human immunodeficiency virus-1infected individuals. Clin Exp Immunol 2009;157(1):90–7. DOI: 10.1111/j.13652249.2009.03960.x. PMID: 19659774.

44. Chinai J. M., Janakiram M., Chen F. et al. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 2015;36(9): 587–95. DOI: 10.1016/j.tips.2015.06.005. PMID: 26162965.

45. Brusa D., Serra S., Coscia M. et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013;98(6):953–63. DOI: 10.3324/haematol.2012.077537. PMID: 23300177.


Review

For citations:


Badmazhapova D.S., Galtseva I.V., Zvonkov E.Е., Davydova Yu.O., Kapranov N.M., Chernova N.G., Gabeeva N.G., Moiseeva T.N., Kovrigina A.M., Dvirnyk V.N., Dzhulakyan U.L., Parovichnikova E.N., Savchenko V.G. EXPRESSION FEATURES OF ANTIGENS INVOLVED IN THE FORMATION OF IMMUNOLOGICAL SYNAPSE IN CHRONIC LYMPHOCYTIC LEUKEMIA. Oncohematology. 2018;13(1):103-114. (In Russ.) https://doi.org/10.17650/1818-8346-2018-13-1-103-114

Views: 9791


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)