Preview

Онкогематология

Расширенный поиск

ИССЛЕДОВАНИЕ МИНИМАЛЬНОЙ ОСТАТОЧНОЙ БОЛЕЗНИ У ПАЦИЕНТОВ С ОСТРЫМИ МИЕЛОИДНЫМИ ЛЕЙКОЗАМИ МЕТОДОМ МНОГОЦВЕТНОЙ ПРОТОЧНОЙ ЦИТОФЛУОРИМЕТРИИ (ОБЗОР ЛИТЕРАТУРЫ)

https://doi.org/10.17650/1818-8346-2018-13-1-83-102

Полный текст:

Аннотация

Пациенты с острым миелоидным лейкозом (ОМЛ) имеют высокий риск развития рецидива, и определение наличия остаточных опухолевых клеток в период ремиссии позволяет прогнозировать его наступление. С высокой вероятностью развития рецидива также ассоциировано медленное снижение количества бластных клеток после курсов индукции ремиссии. Для диагностики минимальной остаточной болезни (МОБ) используют два наиболее чувствительных метода: молекулярный (полимеразная цепная реакция – ПЦР, капельная цифровая ПЦР, секвенирование нового поколения) и иммунофенотипический (многоцветная проточная цитофлуориметрия – МПЦ), которые имеют как преимущества, так и недостатки. Молекулярный метод более чувствителен, однако для получения результата требуется больше времени (от нескольких дней). Определение МОБ методом ПЦР применимо у 40–50 % пациентов с ОМЛ, а методом МПЦ – у 90 %. Метод МПЦ основан на выявлении сочетания антигенов, характерного для опухолевых клеток и не обнаруживаемого на нормальных гемопоэтических клетках. К недостаткам данного метода можно отнести смену иммунофенотипа опухолевого клона в ходе лечения, недостаточное различие антигенных профилей опухолевых и нормальных клеток, а также трудности в оценке МОБ-статуса при низкой клеточности образца костного мозга или крови. У пациентов с ОМЛ в ходе многочисленных исследований было доказано влияние МОБ, исследованной методом МПЦ, на долгосрочные результаты лечения. Определение МОБ-статуса на раннем сроке позволяет оценить химиочувствительность опухоли и эффективность проводимой терапии. Несмотря на различные подходы в детекции МОБ, ее пороги и сочетания моноклональных антител, отсутствие стандартизации, «положительные» значения на ранних или более поздних этапах терапии ухудшают безрецидивную и общую выживаемость) пациентов с ОМЛ. До сих пор не разработаны принципы МОБ-направленной терапии, однако имеются протоколы по применению таргетных препаратов в сочетании со стандартной химиотерапией, что позволяет существенно снизить показатели МОБ. Доказано, что интенсификация лечения не оказывает влияния на количественное значение МОБ и отдаленные результаты терапии. Необходимы новые проспективные исследования, направленные на поиск универсальных маркеров МОБ, создание стандартизированной панели моноклональных антител и разработку эффективной терапии в соответствии со значениями МОБ.

Об авторах

Т. И. Лобанова
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

Лобанова Татьяна Игоревна

125167 Москва, Новый Зыковский проезд, 4



И. В. Гальцева
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия
125167 Москва, Новый Зыковский проезд, 4


Е. Н. Паровичникова
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия
125167 Москва, Новый Зыковский проезд, 4


Список литературы

1. Büchner T., Hiddemann W., Wörmann B. et al. Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the German AML Cooperative Group. Blood 1999;93(12):4116–24. PMID: 10361108.

2. Rai K. R., Holland J. F., Glidewell O. J. et al. Treatment of acute myelocytic leukemia: A study by Cancer and Leukemia Group B. Blood 1981;58(6):1203–12. PMID: 6946847.

3. Ravandi F. Relapsed acute myeloid leukemia: Why is there no standard of care? Best Pract Res Clin Haematol 2013;26(3):253–59. DOI:10.1016/j.beha.2013.10.005. PMID: 24309527.

4. Hokland P., Ommen H. B., Nyvold C. G., Roug A. S. Sensitivity of minimal residual disease in acute myeloid leukaemia in first remission – Methodologies in relation to their clinical situation. Br J Haematol 2012;158(5):569–80. DOI:10.1111/j.1365-2141.2012.09203.x. PMID: 22738609.

5. Buccisano F., Maurillo L., Gattei V. et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia 2006;20(10):1783–89. DOI:10.1038/sj.leu.2404313. PMID: 16838027.

6. Maurillo L., Buccisano F., Del Principe M. I. et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol 2008;26(30):4944–51. DOI:10.1200/JCO.2007.15.9814. PMID: 18606980.

7. Al-Mawali A., Gillis D., Lewis I. The use of receiver operating characteristic analysis for detection of minimal residual disease using five-color multiparameter flow cytometry in acute myeloid leukemia identifies patients with high risk of relapse. Cytometry B Clin Cytom 2009;76(2): 91–101. DOI:10.1002/cyto.b.20444. PMID: 18727068.

8. San Miguel J. F., Martínez A., Macedo A. et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997;90(6):2465–70. PMID: 9310499.

9. Terwijn M., Kelder A., Huijgens P. C. et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. J Clin Oncol 2013;31(31):3889–97. DOI:10.1200/JCO.2012.45.9628. PMID: 24062400.

10. Buckley S. A., Wood B. L., Othus M. et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica 2017;102(5):865–73. DOI:10.3324/haematol.2016.159343. PMID: 28126965.

11. Hourigan C. S., Karp J. E. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol 2013;10(8):460–71. DOI:10.1038/nrclinonc.2013.100. PMID: 23799371.

12. Grimwade D., Hills R. K., Moorman A. V. et al. Refinement of cytogenetic classification in acute myeloid leukaemia: Determination of prognostic significance of rarer recurring chromosomal abnormalities amongst 5876 younger adult patients treated in the UK Medical Research Council trials. Blood 2010;116(3):354–65. DOI:10.1182/blood-2009‑11‑254441. PMID: 20385793.

13. Krauter J., Gorlich K., Ottmann O. et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol 2003;21(23):4413–22. DOI: 10.1200/JCO.2003.03.166. PMID: 14645432.

14. Guerrasio A., Pilatrino C., De Micheli D. et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 2002;16(6):1176–81. DOI: 10.1038/sj.leu.2402478. PMID: 12040450.

15. Buonamici S., Ottaviani E., Testoni N. et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 2002;99(2):443–9. PMID: 11781223.

16. Jourdan E., Boissel N., Chevret S. et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013;121(12):2213–24. DOI: 10.1182/blood-2012‑10‑462879. PMID: 23321257.

17. Scholl C., Breitinger H., Schlenk R. F. et al. Development of a real-time RT-PCR assay for the quantification of the most frequent MLL/AF9 fusion types resulting from translocation t(9;11)(p22; q23) in acute myeloid leukemia. Genes Chromosom Cancer 2003;38(3):274–80. DOI:10.1002/gcc.10284. PMID: 14506704.

18. Chendamarai E., Balasubramanian P., George B. et al. Role of minimal residual disease monitoring in acute promyelocytic leukemia treated with arsenic trioxide in frontline therapy. Blood 2012;119(15):3413–9. DOI:10.1182/blood-2011‑11‑393264. PMID: 22374701.

19. Gilliland G. D., Griffin J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100(5):1532–42. DOI:10.1182/blood-2002‑02‑0492. PMID: 12176867.

20. Hayakawa F., Towatari M., Kiyoi H. et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000;19(5):624–31. DOI:10.1038/sj.onc.1203354. PMID: 10698507.

21. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med 2016;374(23): 2209–21. DOI:10.1056/NEJMoa1516192. PMID: 27276561.

22. Kottaridis P. D., Gale R. E., Langabeer S. E. et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: Implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002;100(7):2393–8. DOI:10.1182/blood-2002‑02‑0420. PMID: 12239147.

23. Lindström M. S. NPM1/B23: A multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int 2011;2011:195–209. DOI:10.1155/2011/195209. PMID: 21152184.

24. Schnittger S., Kern W., Tschulik C. et al. Minimal residual disease levels assessed by NPM1 mutation – specific RQ-PCR provide important prognostic information in AML Minimal residual disease levels assessed by NPM1 mutation – specific RQ-PCR provide important prognostic information in AML. Blood 2009;114(11):2220–31. DOI:10.1182/blood-2009‑03‑213389. PMID: 19587375.

25. Radomska H. S., Huettner C. S., Zhang P. et al. CCAAT/Enhancer Binding Protein alpha Is a Regulatory Switch Sufficient for Induction of Granulocytic Development from Bipotential Myeloid Progenitors. Mol Cell Biol 1998;18(7):4301–14. PMID: 9632814.

26. Kirstetter P., Schuster M. B., Bereshchenko O. et al. Modeling of C/EBPα Mutant Acute Myeloid Leukemia Reveals a Common Expression Signature of Committed Myeloid Leukemia-Initiating Cells. Cancer Cell 2008;13(4):299–310. DOI: 10.1016/j.ccr.2008.02.008. PMID: 18394553.

27. Su L., Gao S. J., Li W. et al. NPM1, FLT3-ITD, CEBPA, and c-kit mutations in 312 Chinese patients with de novo acute myeloid leukemia. Hematology 2014;19(6):324–8. DOI: 10.1179/1607845413Y.0000000132. PMID: 24164801.

28. Fos J., Pabst T., Petkovic V. et al. Deficient CEBPA DNA binding function in normal karyotype AML patients is associated with favorable prognosis. Blood 2011;117(18):4881–84. DOI: 10.1182/blood-2010‑11‑320747. PMID: 21389317.

29. Zeijlemaker W., Schuurhuis G. J. Minimal Residual Disease and Leukemic Stem Cells in Acute Myeloid Leukemia. In: Leukemia. Ed.: M. Guenova, G. Balatzenko. 2013. InTech. DOI: 10.5772/52080.

30. Lugthart S., van Drunen E., van Norden Y. et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: Prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008;111(8):4329–37. DOI: 10.1182/blood-2007‑10‑119230. PMID: 18272813.

31. Hämäläinen M. M., Kairisto V., Juvonen V. et al. Wilms tumour gene 1 overexpression in bone marrow as a marker for minimal residual disease in acute myeloid leukaemia. Eur J Haematol 2008;80(3):201–7. DOI: 10.1111/j.1600-0609.2007.01009.x. PMID: 18081724.

32. Handschuh L., Kaźmierczak M., Milewski M. C. et al. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR. Int J Oncol 2017; [Epub ahead of print]. DOI: 10.3892/ijo.2017.4233. PMID: 29286103.

33. Wang J., Zhao Y., Li J. et al. IDH1 mutation detection by droplet digital PCR in glioma. Oncotarget 2015;6(37): 39651–60. DOI: 10.18632/oncotarget.5630. PMID: 26485760.

34. Ilyas A. M., Ahmad S., Faheem M. et al. Next Generation Sequencing of Acute Myeloid Leukemia: Influencing Prognosis. BMC Genomics 2015;16(Suppl.1):S5. DOI: 10.1186/1471‑2164‑16-S1-S5. PMID: 25924101.

35. Al-Mawali A., Gillis D., Lewis I. The role of multiparameter flow cytometry for detection of minimal residual disease in acute myeloid leukemia. Am J Clin Pathol 2009;131(1):16–26. DOI: 10.1309/AJCP5TSD3DZXFLCX. PMID: 19095561.

36. Kern W., Schnittger S. Monitoring of acute myeloid leukemia by flow cytometry. Curr Oncol Rep. 2003;5(5):405–12. DOI: 10.1007/s11912‑003‑0027‑5. PMID: 12895393.

37. Hauwel M., Matthes T. Minimal residual disease monitoring: The new standard for treatment evaluation of haematological malignancies? Swiss Med Wkly 2014;144: w13907. DOI: 10.4414/smw.2014.13907. PMID: 24452390.

38. Zeijlemaker W., Kelder A., OussorenBrockhoff Y. J. et al. Peripheral blood minimal residual disease may replace bone marrow minimal residual disease as an immunophenotypic biomarker for impending relapse in acute myeloid leukemia. Leukemia 2016;30(3):708–15. DOI: 10.1038/leu.2015.255. PMID: 26373238.

39. Al-Mawali A., Gillis D., Hissaria P., Lewis I. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am J Clin Pathol 2008;129(6):934–45. DOI: 10.1309/FY0UMAMM91VPMR2W. PMID: 18480011.

40. Buccisano F., Maurillo L., Ilaria M. et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012;119(2):332–41. DOI: 10.1182/blood-2011‑08‑363291. PMID: 22039260.

41. Baer M. R., Stewart C. C., Dodge R. K. et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001;97(11):3574–80. DOI: 10.1182/blood.V97.11.3574. PMID: 11369653.

42. Voskova D., Schoch C., Schnittger S. et al. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: Comparison with cytomorphologic, cytogenetic, and molecular genetic findings. Cytometry B Clin Cytom 2004;62(1):25–38. DOI: 10.1002/cyto.b.20025. PMID: 15468339.

43. Cui W., Zhang D., Cunningham M. T., Tilzer L. Leukemia-associated aberrant immunophenotype in patients with acute myeloid leukemia: Changes at refractory disease or first relapse and clinicopathological findings. Int J Lab Hematol 2014;36(6):636–49. DOI: 10.1111/ijlh.12193.

44. Van Der Velden V. H.J., van Der SluijsGeling A., Gibson B. E.S. et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia 2010;24(9):1599–606. DOI:10.1038/leu.2010.153. PMID: 20668473.

45. Roug A. S., Larsen H. O., Nederby L. et al. HMICL and CD123 in combination with a CD45/CD34/CD117 backbone – a universal marker combination for the detection of minimal residual disease in acute myeloid leukaemia. Br J Haematol 2014;164(2):212–22. DOI:10.1111/bjh.12614. PMID: 24152218.

46. Eissa D. S., Kandeel E. Z., Ghareeb M. Human myeloid inhibitory C-lectin: a highly specific and stable acute myeloid leukemia marker. Hematol Oncol 2017;35(4):814–20. DOI: 10.1002/hon.2352. PMID: 27734526.

47. Graf M., Reif S., Hecht K. et al. High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol 2005;79(1):26–35. DOI:10.1002/ajh.20337. PMID: 15849776.

48. Ceran F., Ozet G., Dagdas S. et al. Clinical Significance of CD87 Expression in Acute Myeloblastic Leukemia. Int J Hematol Oncol 2016;26(1):1–7. DOI:10.4999/uhod.16900.

49. Kern W., Voskova D., Schoch C. et al. Prognostic impact of early response to induction therapy as assessed by multiparameter flow cytometry in acute myeloid leukemia. Haematologica 2004;89(5):528–40. PMID: 15136215.

50. Vidriales M., Pérez-Lópeza E., Pegenautea C. et al. Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia. Leuk Res 2016;40:1–9. DOI: 10.1016/j.leukres.2015.10.002. PMID: 26598032.

51. Venditti A., Buccisano F., Del Poeta G. et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood 2000;96(12):3948–52. PMID: 11090082.

52. Rubnitz J. E., Inaba H., Dahl G. et al. Minimal Residual Disease-Directed Therapy for Childhood Acute Myeloid Leukemia: Results of the AML02 Multicenter Trial. Lancet Oncol 2010;11(6):543–52. DOI: 10.1016/S1470-2045(10)70090-5. PMID: 20451454. 101

53. Buccisano F., Maurillo L., Spagnoli A. et al. Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood 2010;116(13):2295–303. DOI: 10.1182/blood-2009‑12‑258178. PMID: 20548095.

54. Lacombe F., Campos L., Allou K. et al. Prognostic value of multicenter flow cytometry harmonized assessment of minimal residual disease in acute myeloblastic leukemia. Hematol Oncol 2017; [Epub ahead of print]. DOI: 10.1002/hon.2488. PMID: 29218734.

55. Buldini B., Rizzati F., Masetti R et al. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol 2017;177(1):116–26. DOI: 10.1111/bjh.14523. PMID: 28240765.

56. Minetto P., Guolo F., Clavio M. et al. Early minimal residual disease assessment after AML induction with fludarabine, cytarabine and idarubicin(FLAI) provides the most useful prognostic information. Br J Haematol 2018; [Epub ahead of print]. DOI: 10.1111/bjh.15106. PMID: 29359798.

57. Köhnke T., Sauter D., Ringel K. et al. Early assessment of minimal residual disease in AML by flow cytometry during aplasia identifies patients at increased risk of relapse. Leukemia 2015;29(2):377–86. DOI: 10.1038/leu.2014.186. PMID: 24912430.

58. Maurillo L., Buccisano F., Piciocchi A. et al. Minimal residual disease as biomarker for optimal biologic dosing of ARA-C in patients with acute myeloid leukemia. Am J Hematol 2015;90(2): 125–31. DOI: 10.1002/ajh.23893. PMID: 25377359.

59. Inaba H., Coustan-Smith E., Cao X. et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol 2012;30(29):3625–32. DOI: 10.1200/JCO.2011.41.5323. PMID: 22965955.

60. Ouyang J., Goswami M., Peng J. et al. Comparison of Multiparameter Flow Cytometry Immunophenotypic Analysis and Quantitative RT-PCR for the Detection of Minimal Residual Disease of Core Binding Factor Acute Myeloid Leukemia. Am J Clin Pathol 2016;145(6):769–77. DOI: 10.1093/ajcp/aqw038. PMID: 27298396.

61. Гальцева И.В., Паровичникова Е. Н., Савченко В. Г. Минимальная остаточная популяция лейкемических клеток у больных острыми миелоидными лейкозами. Терапевтический архив 1997;67(7):74–9.

62. Kern W., Voskova D., Schoch C. et al. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 2004;104(10):3078–85. DOI: 10.1182/blood-2004‑03‑1036. PMID: 15284114.

63. Chen X., Xie H., Wood B. L. et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol 2015;33(11):1258–64. DOI: 10.1200/JCO.2014.58.3518. PMID: 25732155.

64. Tierens A., Bjørklund E., Siitonen S. et al. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study. Br J Haematol 2016;174(4): 600–9. DOI: 10.1111/bjh.14093. PMID: 27072379.

65. Loken M. R., Alonzo T., Pardo L. et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood 2012;20(8):1581–8. DOI: 10.1182/ blood-2012‑02‑408336. PMID: 22649108.

66. Sievers E. L., Lange B. J., Alonzo T. et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003;101(9):3398–406. DOI: 10.1182/blood-2002‑10‑3064. PMID: 12506020.

67. Coustan-Smith E., Ribeiro R. C., Rubnitz J. E. et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol 2003;123(2):243–52. PMID: 14531905.

68. Langebrake C., Creutzig U., Dworzak M. et al. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: The MRD-AML-BFM Study Group. J Clin Oncol 2006;24(22):3686–92.

69. DOI: 10.1200/JCO.2005.05.4312. PMID: 16877738.

70. San Miguel J., Vidriales M., LopezBerges C. et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction. Blood 2001;98(6):1746–51. DOI: 10.1182/blood.V98.6.1746. PMID: 11535507.


Для цитирования:


Лобанова Т.И., Гальцева И.В., Паровичникова Е.Н. ИССЛЕДОВАНИЕ МИНИМАЛЬНОЙ ОСТАТОЧНОЙ БОЛЕЗНИ У ПАЦИЕНТОВ С ОСТРЫМИ МИЕЛОИДНЫМИ ЛЕЙКОЗАМИ МЕТОДОМ МНОГОЦВЕТНОЙ ПРОТОЧНОЙ ЦИТОФЛУОРИМЕТРИИ (ОБЗОР ЛИТЕРАТУРЫ). Онкогематология. 2018;13(1):83-102. https://doi.org/10.17650/1818-8346-2018-13-1-83-102

For citation:


Lobanova T.I., Galtseva I.V., Parovichnikova E.N. MINIMAL RESIDUAL DISEASE ASSESMENT IN PATIENTS WITH ACUTE MYELOID LEUKEMIA BY MULTICOLOUR FLOW CYTOMETRY (LITERATURE REVIEW). Oncohematology. 2018;13(1):83-102. (In Russ.) https://doi.org/10.17650/1818-8346-2018-13-1-83-102

Просмотров: 221


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)