SIGNIFICANCE OF ETV6-RUNX1 FUSION GENE TRANSCRIPT DETECTION IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA WITH TRANSLOCATION t(12;21)(p13;q22)
https://doi.org/10.17650/1818-8346-2017-12-4-57-70
Abstract
Introduction. Translocation t(12;21)(p13;q22) is one of the most common structural genetic abnormalities in childhood acute lymphoblastic leukemia (ALL). It cannot be detected by conventional G-banding, so a reverse-transcriptase polymerase chain reaction (RT-PCR) or fluorescent in situ hybridization are used for this purpose.
The aim of the study was to evaluate the prognostic significance of qualitative and quantitative detection of ETV6-RUNX1 fusion gene transcript at various time points in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients.
Materials and methods. ETV6-RUNX1 fusion gene transcript was revealed by both reverse-transcriptase PCR and quantitative real-time PCR (RQ-PCR) in 34 out of 166 (20.5 %) children with BCP-ALL. Qualitative ETV6-RUNX1-positivity at days 36 and 85 led to unfavorable outcome (lower event-free survival –EFS and higher cumulative incidence of relapse – CIR). While ETV6-RUNX1 status at day 15 did not allow to divide patients with different outcomes. By ROC curve analysis we determined threshold levels (TL) for ETV6-RUNX1/ABL1 ratio at days 0, 15, 36 and 85. Afterwards we adjusted obtained results to 10-fold scale.
Results. So practically applicable TL were as follows 500.0 %, 1 %, 0.1 % и 0.01 % for days 0, 15, 36 and 85, respectively. EFS and CIR were both worse in patients with ETV6-RUNX1/ABL1 ratio equal or above defined TL. Moreover, initial ratio ≥500,0 % corresponded to delayed blast clearance at days 15 and 36. We showed good qualitative (84.8 %) and quantitative (R2 = 0.953) concordance between ETV6-RUNX1/ABL1 ratio and MRD data obtained by flow cytometry at days 15, 36, 85. Of note, defined TL for ETV6-RUNX1/ABL1 at days 15, 36, 85 were equal to prognostically important levels for flow cytometry MRD.
Conclusion. Thus, qualitative detection and quantitative value of ETV6-RUNX1 fusion gene transcript showed prognostic significance in the course of treatment in children with BCP-ALL. Based on these results we propose standardization approaches for Moscow – Berlin ALL study group.
About the Authors
G. A. TsaurRussian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026; 106 Pervomayskaya St., Ekaterinburg 620049; 3 Repina St., Ekaterinburg 620030
Т. О. Riger
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026
A. M. Popov
Russian Federation
1 Samory Mashela Sr., Moscow 117997
T. Yu. Verzhbitskaya
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026
L. V. Vakhonina
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026
A. A. Vlasova
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149
Yu. V. Olshanskaya
Russian Federation
1 Samory Mashela Sr., Moscow 117997
А. N. Kazakova
Russian Federation
1 Samory Mashela Sr., Moscow 117997
O. V. Streneva
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026
O. V. Makarova
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149
S. V. Tsvirenko
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 3 Repina St., Ekaterinburg 620030
L. I. Saveliev
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026; 3 Repina St., Ekaterinburg 620030
О. R. Arakaev
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026
L. G. Fechina
Russian Federation
32 Serafimy Deryabinoy St., Ekaterinburg 620149; 22A Karlа Marksа St., Ekaterinburg 620026
References
1. Romana S.P., Le Coniat M., Berger R. t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 1994;9:186–91. PMID: 7515661.
2. Golub T., Barker G., Bohlander S. et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995;92(11):4917–21. PMID: 7761424.
3. Romana S.P., Mauchauffe M., Le Coniat M. et al. The t(12;21) of acute lymphoblastic leukemia results in a telAML1 gene fusion. Blood 1995;85(12): 3662–70. PMID: 7780150.
4. Liang D., Shih L., Yang C. et al. Frequencies of ETV6-RUNX1 fusion and hyperdiploidy in pediatric acute lymphoblastic leukemia are lower in Far East than West. Pediatr Blood Cancer 2010;55(3):430–3. DOI: 10.1002/pbc.22628. PMID: 20658612.
5. Moricke A., Zimmermann M., Reiter A. et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24(2):265–84. DOI: 10.1038/leu.2009.257. PMID: 20010625.
6. Moorman A., Ensor H., Richards S. et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 2010;11(5):429–38. DOI: 10.1016/S1470-2045(10)70066–8. PMID: 20409752.
7. Shurtleff S., Buijs A., Behm F. et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995;9(12):1985–9.PMID: 8609706.
8. Borkhardt A., Cazzaniga G., Viehmann S. et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Blood 1997;90(2):571–7. PMID: 9226156.
9. Kobayashi H., Rowley J. Identification of cytogenetically undetected 12p13 translocations and associated deletions with fluorescence in situ hybridization. Genes Chromosomes Cancer 1995;12(1):66–9. PMID: 7534114.
10. Loh M., Goldwasser M., Silverman L. et al. Prospective analysis of TEL/AML1- positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95–01. Blood 2006;107(11):4508–13. DOI: 10.1182/blood-2005-08-3451. PMID: 16493009.
11. Forestier E., Heyman M., Andersen M.-K. et al. Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol 2008;140(6):665–72. DOI: 10.1111/j.1365–2141.2008.06980.x. PMID: 18241254.
12. Bhojwani D., Pei D., Sandlund J. et al. ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia 2012;26(2):265–70. DOI: 10.1038/leu.2011.227. PMID: 21869842.
13. Lee J., Kim S., Jang P. et al. Outcome and prognostic factors for ETV6/RUNX1 positive pediatric acute lymphoblastic leukemia treated at a single institution in Korea. Cancer Res Treat 2017;49(2):446–53. DOI: 10.4143/crt.2016.211. PMID: 27506214.
14. Pui C.-H., Pei D., Raimondi S. et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy. Leukemia 2017; 31(2):333–9. DOI: 10.1038/leu.2016.234. PMID: 27560110.
15. Conter V., Bartram C., Valsecchi M.-G. et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115(16):3206–14. DOI: 10.1182/blood-2009-10-248146. PMID: 20154213.
16. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Применение проточной цитометрии для определения минимальной остаточной болезни у детей с острым лимфобластным лейкозом, получающих терапию по протоколам со сниженной интенсивностью. Онкогематология 2015;10(4):44–55. [Popov А.M., Verzhbitskaya Т.Yu., Tsaur G.A. et al. Flow cytometric minimal residual disease monitoring in children with acute lymphoblastic leukemia treated by regimens with reduced intensity. Onkogematologiya = Oncohematology 2015;10(4):44–55. (In Russ.)]. DOI: 10.17650/1818-8346-2015-10-4-44-55.
17. Stams W., den Boer M., Beverloo B. et al. Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia. Clin Cancer Res 2005;11(8):2974–80. DOI: 10.1158/1078–0432.CCR-04–1829. PMID: 15837750.
18. Ballerini P., Landman Parker J., Laurendeau I. et al. Quantitative analysis of TEL/AML1 fusion transcripts by realtime RT-PCR assay in childhood acute lymphoblastic leukemia. Leukemia 2000;14(8):1526–8. PMID: 10942253.
19. Drunat S., Olivi M., Brunie G. et al. Quantification of TEL-AML1 transcript for minimal residual disease assessment in childhood acute lymphoblastic leukaemia. Br J Haematol 2001;114(2):281–9. PMID: 11529845.
20. Seeger K., Kreuzer K.-A., Lass U. et al. Molecular quantification of response to therapy and remission status in TEL-AML1-positive childhood all by real-time reverse transcription polymerase chain reaction. Cancer Res 2001;61(6):2517–22. PMID: 11289124.
21. Bolufer P., Barragán E., Verdeguer A. et al. Rapid quantitative detection of TEL-AML1 fusion transcripts in pediatric acute lymphoblastic leukemia by real-time reverse transcription polymerase chain reaction using fluorescently labeled probes. Haematologica 2002;87(1):23–32. PMID: 11801462.
22. Madzo J., Zuna J., Muzíková K. et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer 2003;97(1):105–13. DOI: 10.1002/cncr.11043. PMID: 12491511.
23. Taube T., Eckert C., Körner G. et al. Realtime quantification of TEL–AML1 fusion transcripts for MRD detection in relapsed childhood acute lymphoblastic leukaemia Comparison with antigen receptor-based MRD quantification methods. Leuk Res 2004;28(7):699–706. DOI: 10.1016/j.leukres.2003.11.006. PMID: 15158091.
24. Литвинов Д.В., Карелин А.Ф., Романова К.И. и др. Лечение острого лимфобластного лейкоза у детей: современные возможности и нерешенные проблемы. Доктор.Ру 2015;10(111):30–7.[LitvinovD.V., Karelin A.F., Romanova K.I. et al. Treatment of acute lymphoblastic leukemia in children: current possibilities and unsolved problems. Doctor.ru 2015;10(111):30–7. (In Russ.)].
25. Bennett J., Catovsky D., Daniel M. et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976;33(4):451–8. PMID: 188440.
26. Bene M.C., Castoldi G., Knapp W. et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9(10):1783–6. PMID: 7564526.
27. Béné M.C., Nebe T., Bettelheim P. et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal oftheEuropeanLeukemiaNet Work Package 10. Leukemia 2011;25(4): 567–74. DOI: 10.1038/leu.2010.312. PMID: 21252983.
28. ISCN 2005: An International System for Human Cytogenetic Nomenclature (2005). Eds.: L. Shaffer, N. Tommerup. Basel: S. Karger, 2005.
29. ISCN 2009: An International System for Human Cytogenetic Nomenclature (2009). Eds.: L. Schaffer, M. Slovak, L. Campbell. Basel: S. Karger, 2009.
30. ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013). Eds.: L. Schaffer, J. McGovan-Jordan, M. Schmid. Basel: S. Karger, 2013.
31. ISCN 2016 An International System for Human Cytogenomic Nomenclature (2016). Eds.: J. McGowan-Jordan, A. Simons, M. Schmid. Basel: S. Karger, 2016.
32. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Особенности мониторинга минимальной остаточной болезни при В-линейных острых лимфобластных лейкозах методом проточной цитометрии у детей первого года жизни. Детская онкология 2008;2;32–5. [Popov A.M., Verzhbitskaya T.J., Tsaur G.A. et al. Peculiarities of minimal residual disease monitoring by flow cytometry in infants with B-lineage acute lymphoblastic leukemia. Detskaya onkologiya = Pediatric Oncology 2008;2:32–5. (In Russ.)].
33. Цаур Г.А., Попов А.М., Фечина Л.Г., Румянцев С.А. Методические основы диагностики и мониторинга минимальной остаточной болезни при острых лейкозах у детей первого года жизни. Онкогематология 2016;11(1):62–74. [Tsaur G.A., Popov A.M., Fechina L.G., Rumyantsev S.A. Methodological aspects of diagnostics and minimal residual disease monitoring in infant acute leukemias. Onkogematologiya = Oncohematology 2016;11(1):62–74. (In Russ.)]. DOI: 10.17650/1818-8346-2016-11-1-62-74.
34. Попов А.М., Белевцев М.В., Боякова Е.В. и др. Стандартизация определения минимальной остаточной болезни методом проточной цитометрии у детей с В-линейным острым лимфобластным лейкозом. Опыт работы российско-белорусской кооперативной группы. Онкогематология 2016;11(4):64–73. [Popov A.M., Belevtsev M.V., Boyakova E.V. et al. Standardization of flow cytometric minimal residual disease monitoring in children with B-cell precursor acute lymphoblastic leukemia. Russia–Belarus multicenter group experience. Onkogematologiya = Oncohematology 2016;11(4):64–73. (In Russ.)]. DOI: 10.17650/1818-8346-2016-11-4-64-73.
35. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у пациентов с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки 2011;4:107–11. [Tsaur G.A., Druy А.Е., Popov А.М. et al. Microfluidic biochips for RNA quantity and quality evaluation in patients with oncological disorders. Vestnik Uralskoy medicinskoy akademicheskoy nauki = Bulletin of the Ural Medical Academic Research 2011;4:107–11. (In Russ.)].
36. Harbott J., Viehmann S., Borkhardt A. et al. Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997;90(12):4933–7. PMID: 9389711.
37. Gabert J., Beillard E., van der Velden V. et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer Program. Leukemia 2003;17(12):2318–57. DOI: 10.1038/sj.leu.2403135. PMID: 14562125.
38. Beillard E., Pallisgaard N., van der Velden V. et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “realtime” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe Against Cancer Program. Leukemia 2003;17(12):2474–86. DOI: 10.1038/sj.leu.2403136. PMID: 14562124.
39. Cross N., White H., Müller M. et al. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012;26(10):2172–5. DOI: 10.1038/leu.2012.104. PMID: 22504141.
40. Zweig M., Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993;31:561–77. PMID: 8472349.
41. Obuchowski N. ROC analysis. Am J Roentgenol 2005;184(2):364–72. DOI: 10.2214/ajr.184.2.01840364. PMID: 15671347.
42. Kaplan E., Meier P. Non-parametric estimation from incomplete observations. J Am Statc Assoc 1958;53:457–81.
43. Слинин А.С., Быданов О.И., Карачунский А.И. Анализ выживаемости и вероятности возникновения отдельных событий у пациентов с острым лейкозом. Вопросы гематологии, онкологии и иммунопатологии в педиатрии 2016; 15(3):34–9. [Slinin A.S., Bydanov O.I., Karachunskiy A.I. Analysis of survival and possibility of certain events in patients with acute leucosis. Voprosy gematologii, onkologii i immunopatologii v pediatrii = Pediatric hematology/oncology and immunopathology 2016;15(3):34–9. (In Russ.)]. DOI: 10.20953/1726-1708-2016-3-34-39.
44. Cayuela J.-M., Baruchel A., Orange C. et al. TEL-AMLl fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 1996;88(1): 302–30. PMID: 8704188.
45. Satake N., Kobayashi H., Tsunematsu Y. et al. Minimal residual disease with TELAML1 fusion transcript in childhood acute lymphoblastic leukaemia with t(12;21). Br J Haematol 1997;97(3):607–11. PMID: 9207408.
46. Kato M., Ishimaru S., Seki M. et al. Longterm outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children. Leukemia 2017;31:580–4. DOI: 10.1038/leu.2016.274. PMID: 27698447.
47. Neale G., Coustan-Smith E., Pan Q. et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999;13(8):1221–6. PMID: 10450750.
48. Malec M., Björklund E., Söderhäll S. et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001;15(5):716–27. PMID: 11368431.
49. Neale G., Coustan-Smith E., Stow P. et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004;18(5):934–8. DOI: 10.1038/sj.leu.2403348. PMID: 15029212.
50. Malec M., van der Velden V., Björklund E. et al. Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: comparison between RQ-PCR analysis of Ig/TcR rearrangements and multicolor flow cytometry immunophenotyping. Leukemia 2004;18(10):1630–6. DOI: 10.1038/sj.leu.2403444. PMID: 15295608.
51. Kerst G., Kreyenberg H., Roth C. et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukemia by flow cytometry and real-time PCR. Br J Haematol 2005; 128(6):774–82. DOI: 10.1111/j.1365-2141.2005.05401.x. PMID: 15755280.
52. Robillard N., Cavé H., Méchinaud F. et al. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Haematologica 2005;90(11):1516–23. PMID: 16266899.
53. Gaipa G., Cazzaniga G., Valsecchi M.G. et al. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica 2012;97(10):1582–93. DOI: 10.3324/haematol.2011.060426. PMID: 22581001.
54. Fronkova E., Madzo J., Zuna J. et al. TEL/AML 1 real-time quantitative reverse transcriptase PCR can complement minimal residual disease assessment in childhood ALL. Leukemia 2005;19(7):1296–7. DOI: 10.1038/sj.leu.2403759. PMID: 15858617.
55. Alm S., Engvall C., Asp J. et al. Minimal residual disease monitoring in childhood B lymphoblastic leukemia with t(12;21)(p13; q22); ETV6-RUNX1: concordant results using quantitation of fusion transcript and flow cytometry. Int J Lab Hematol 2017; 39(2):121–8. DOI: 10.1111/ijlh.12593. PMID: 28004528.
56. Попов А.М., Цаур Г.А., Вержбицкая Т.Ю. и др. Сравнение результатов определения минимальной остаточной болезни методами проточной цитометрии и ПЦР химерного транскрипта у детей с ОЛЛ из В-линейных предшественников. Гематология и трансфузиология 2010;55(2): 3–9. [Popov A.M., Tsaur G.A., Verzhbitskaya T.Y. et al. Comparison of the results of evaluating the minimum residual disease by flow cytometry and by detecting the chimeric transcript by the polymerase chain reaction in children with B-cell acute lymphoblastic leukemia. Gematologiya i transfuziologiya = Hematology and transfusiology 2010;55(2):3–9. (In Russ.)].
57. Metzler M., Mann G., Monschein U. et al. Minimal residual disease analysis in children with t(12;21)-positive acute lymphoblastic leukemia: comparison of Ig/TCR rearrangements and the genomic fusion gene. Haematologica 2006;91(5):683–6. PMID: 16627248.
58. Цаур Г.А., Попов А.М., Плеханова О.М. и др. Транслокация t(1;11)(p32;q23) с образованием химерного гена MLLEPS15 при острых лейкозах: обзор литературы и описание 6 новых случаев. Подходы к мониторированию минимальной остаточной болезни. Онкогематология 2013;1:17–32. [Tsaur G.A., Popov A.M., Plekhanova O.M. et al. Translocation t(1;11)(p32;q23) with MLL-EPS15 fusion gene formation in acute leukemias: a review and 6 new cases report. Approaches to minimal residual disease monitoring. Onkogematologiya = Oncohematology 2013;1:17–32. (In Russ.)].
59. Цаур Г.А., Попов А.М., Наседкина Т.В. и др. Прогностическое значение минимальной остаточной болезни, определенной путем выявления химерных транскриптов у детей первого года жизни, больных острым лимфобластным лейкозом, получающих терапию по протоколу MLL-Baby. Гематология и трансфузиология 2012;57(4):12–22. [Tsaur G.A., Popov A.M., Nasedkina T.V. et al. Prognostic significance of the minimal residual disease evaluated by detection of MLL fusion gene transcripts in infants under 1 year of age with acute lymphoblastic leukemia treated by the MLL-Baby protocol. Gematologiya i transfuziologiya = Hematology and transfusiology. 2012;57(4):12–22. (In Russ.)].
Review
For citations:
Tsaur G.A., Riger Т.О., Popov A.M., Verzhbitskaya T.Yu., Vakhonina L.V., Vlasova A.A., Olshanskaya Yu.V., Kazakova А.N., Streneva O.V., Makarova O.V., Tsvirenko S.V., Saveliev L.I., Arakaev О.R., Fechina L.G. SIGNIFICANCE OF ETV6-RUNX1 FUSION GENE TRANSCRIPT DETECTION IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA WITH TRANSLOCATION t(12;21)(p13;q22). Oncohematology. 2017;12(4):57-70. (In Russ.) https://doi.org/10.17650/1818-8346-2017-12-4-57-70