RENIN-ANGIOTENSIN SYSTEM IN REGULATION OF HEMATOPOIESIS
https://doi.org/10.17650/1818-8346-2017-12-4-50-56
Abstract
The renin-angiotensin system (RAS) has long been known as the endocrine system involved in the regulation of arterial pressure and waterelectrolyte balance. Local (tissue) RAS can influence cellular activity, tissue damage and regeneration. In the bone marrow there are active ligands of peptides, mediators, receptors and signaling pathways of the RAS. Local RAS can influence the growth, production, proliferation and differentiation of hematopoietic cells and participate in the regulation of both normal and pathological hematopoiesis. Angiotensin-converting enzyme (ACE) CD143 plays a key role in the classical RAS. After differentiation from hemangioblast, hematopoietic progenitor cells constantly express ACE in human embryonic, fetal and adult hematopoietic tissues, as well as at all stages of hematopoietic ontogeny. The ACE cleaves the C-terminal dipeptide and thus forms the octapeptide Angiotensin II. In addition to angiotensin II, ACE also regulates a group of biologically active peptides, such as substance P, ac-SDKP and angiotensin 1–7. Local RAS is also one of the most important components in the tumor microenvironment, affecting tumor growth and metastasis by autocrine and paracrine pathways, modulating numerous carcinogenic events such as angiogenesis, apoptosis, cell proliferation, immune responses, and extracellular matrix formation.
The purpose of this review is to describe the known functions of local RAS in the hematopoiesis regulation. More detailed study of the RAS components mechanisms of action will expand therapy approaches in the neoplastic diseases and in bone marrow transplantation.
About the Authors
M. L. KanaevaRussian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
I. V. Galtseva
Russian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
I. M. Nakastoev
Russian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
Y. B. Balzhanova
Russian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
E. O. Gribanova
Russian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
E. N. Parovichnikova
Russian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
V. G. Savchenko
Russian Federation
4 Noviy Zykovskiy proezd, Moscow, 125167
References
1. Jokubaitis V.J., Sinka L., Driessen R. et al. Angiotensin converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal and adult hematopoietic tissues. Blood 2008;111(8):4055–63. DOI: 10.1182/blood-2007-05-091710. PMID: 17993616.
2. Tigerstedt R., Bergman P.G. Niere und Kreislauf. Scandinav Arch J Physiol 1898;8:223.
3. Bernstein K.E., Martin B.M., Bernstein E.A. et al. The isolation of angiotensin-converting enzyme cDNA. J Biol Chem 1988;263(23):11021–4. PMID: 2841312.
4. Ferrario C.M. Does angiotensin-(1–7) contribute to cardiac adaptation and preservation of endothelial function in heart failure? Circulation 2002;105(13):1523–5. DOI: 10.1161/01.CIR.0000013787.10609.DC. PMID: 11927512.
5. Коваленко В.Н., Талаева Т.В., Братусь В.В. Ренин-ангиотензиновая система в кардиальной патологии. Український кардіологічний журнал 2012;3:105–29. [Kovalenko V.N., Talaeva T.V., Bratus V.V. Reninangiotensin system in cardiac pathology. Ukrainskiy kardiologicheskiy zhurnal = Ukrainian Cardiology Journal 2012;3:105–29. (In Russ.)].
6. Haznedaroğlu I.C., Tuncer S., Gürsoy M. A local renin-angiotensin system in the bone marrow. Med Hypotheses 1996;46(6):507–10. PMID: 803932.
7. Hubert C., Savary K., Gasc J.M. et al. The hematopoietic system: a new niche for the renin-angiotensin system. Nat Clin Pract Cardiovasc Med 2006;3(2):80–5. DOI: 10.1038/ncpcardio0449. PMID: 16446776.
8. Zambidis E.T., Park T.S., Yu W. et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 2008;112(9):3601–14. DOI: 10.1182/blood-2008-03-144766. PMID: 18728246.
9. Soubrier F., Alhenc-Gelas F., Hubert C. et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 1988;85(24):9386–90. PMID: 2849100.
10. Corvol P., Williams T. A., Soubrier F. Peptidyl dipeptidase A: angiotensin I- converting enzyme. Methods Enzymol 1995;248:283–305. PMID: 7674927.
11. Кугаевская Е.В. Ангиотензин-превращающий фермент. Доменная структура и свойства. Биомедицинская химия 2005;51(6):567–80. [Kugaevskaya E.V. Angiotensin converting enzyme domain structure and properties. Biomeditsinskaya khimiya = Biomed Khim 2005;51(6): 567–80. (In Russ.)]. PMID: 16521820.
12. Paul M., Mehr A.P., Kreutz R. Physiology of Local Renin-Angiotensin Systems. Physiol 2006;86(3):787–803. DOI: 10.1152/physrev.00036.2005. PMID: 16816138.
13. Kamper A.-L., Nielsen O.J. Effect of enalapril on haemoglobin and serum erythropoietin in patients with chronic nephropathy. Scand J Clin Lab Invest 1990;50(6):611–8. DOI: 10.3109/00365519009089178. PMID: 2247767.
14. Weber H., Taylor D.S., Molloy C.J. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. Correlation with the expression of specific endogenous growth factors and reversal by suramin. J Clin Invest 1994;93(2):788–98. DOI: 10.1172/JCI117033. PMID: 7509348.
15. Mrug M., Stopka T., Julian V.A. et al. Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest 1997;100(9):2310–4. DOI: 10.1172/JCI119769. PMID: 9410909.
16. Rodgers K.E., Xiong S., Steer R., diZerega G.S. Effect of Angiotensin II on Hematopoietic Progenitor Cell Proliferation. Stem Cells 2000;18(4):287–94. DOI: 10.1634/stemcells.18-4-287. PMID: 10924095.
17. Pennefather J.N., Lecci A., Candenas M.L. et al. Tachykinins and tachykinin receptors: a growing family. Life Sci 2004;74(12):1445–63. PMID: 14729395.
18. Rameshwar P., Gascón P. Substance P (SP) mediates production of stem cell factor and interleukin-1 in bone marrow stroma: potential autoregulatory role for these cytokines in SP receptor expression and induction. Blood 1995;86(2):482–90. PMID: 7541664.
19. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002;532(1–2):107–10. PMID: 12459472.
20. Ferrario C.M., Trask A.J., Jessup J.A. Advances in biochemical and functional roles of angiotensin – converting enzyme 2 and angiotensin-(l – 7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 2005;289(6):2281–90. DOI: 10.1152/ajpheart.00618.2005. PMID: 16055515.
21. Santos R.A., Haibara A.S., CampagnoleSantos M.J. et al. Characterization of a new selective antagonist for angiotensin-(1–7), D-pro7-angiotensin(1–7). Hypertension 2003;41(3 Pt 2):737–43. DOI: 10.1161/01.HYP.0000052947.60363.24. PMID: 12623989.
22. Allen L.F., Lefkowitz R.J. Caron M.G., Cotecchia S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the a1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci 1991;88(24):11354–8. PMID: 1662393.
23. Martin K.A., Hockfield S. Expression of the mas proto-oncogene in the rat hippocampal formation is regulated by neuronal activity. Brain Res Mol Brain Res 1993;19(4):303–9. DOI: 10.1016/0169-328X(93)90129-D. PMID: 8231733.
24. Hill C.S., Treisman R. Transcriptional regulation by extracellular signals: Mechanisms and specificity. Cell 1995;80(2):199–211. PMID: 7834740.
25. Ellefson D.D., diZerega G. S., Espinoza T. et al. Synergistic effects of co-administration of angiotensin 1–7 and Neupogen on hematopoietic recovery in mice. Cancer Chemother Pharmacol 2004;5391:15–24. DOI: 10.1007/s00280-003-0710-0. PMID: 14569417.
26. Heringer-Walther S., Eckert K., Schumacher S.M. et al. Angiotensin-(1–7) stimulates hematopoietic progenitor cells in vitro and in vivo. Haematologica 2009;94(6):857–60. DOI: 10.3324/haematol.2008.000034. PMID: 19377080.
27. Rieger K.J., Saez-Servent N., Papet M.P. et al. Involvementof human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysylproline. Biochem J 1993;296(Pt. 2):373–8. PMID: 8257427.
28. Azizi M., Rousseau A., Ezan E. et al. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetylseryl-aspartyl-lysyl-proline. J Clin Invest 1996;97(3):839–44. DOI: 10.1172/JCI118484. PMID: 8609242.
29. Lenfant M., Wdzieczak-Bakala J., Guittet E. et al. Inhibitor of hematopoietic pluripotent stem cell proliferation: purification and determination of its structure. Proc Natl Acad Sci 1989;86(3):779–82. PMID: 2915977.
30. Coutton C., Guigon M., Bohbot A. et al. Photoprotection of normal human hematopoietic progenitors by the tetrapeptide N-AcSDKP. Exp Hematol 1994; 22(11):1076–80. PMID: 7925774.
31. Watanabe T., Brown G.S., Kelsey L.S. et al. In vivo protective effects of tetrapeptide AcSDKP, with or without granulocyte colony-stimulation factor, on murine progenitor cells after sublethal irradiation. Exp Hematol 1996;24(6):713–21. PMID: 8635527.
32. Deeg H.J., Seidel K., Hong D.S. et al. In vivo radioprotective effect of AcSDKP on canine myelopoiesis. Ann Hematol 1997;74(3):117–22. PMID: 9111424.
33. Fuchs S., Xiao H.D., Cole J.M. et al. Role of the N-terminal catalytic domain of angiotensin-converting enzyme investigated by targeted inactivation in mice. J Biol Chem 2004;279(16): 15946–53. DOI: 10.1074/jbc.M400149200. PMID: 14757757.
34. Bernstein K.E., Shen X.Z., GonzalezVillalobos R.A. et al. Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE). Curr Opin Pharmacol 2011;11(2):105–11. DOI: 10.1016/j.coph.2010.11.001. PMID: 21130035.
35. Bonnet D., Lemoine F.M., PontvertDelucq S. et al. Direct and reversible inhibitory effect of the tetrapeptide acetylN-Ser-Asp-Lys-Pro(Seraspenide) on the growth of human CD34+ subpopulations in response to growth factors. Blood 1993;82(11):3307–14. PMID: 7694679.
36. Ni L., Feng Y., Wan H. et al. Angiotensin-(1–7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncol Rep 2012;27(3):783–90. DOI: 10.3892/or.2011.1554. PMID: 22089256.
37. George A.J., Thomas W.G., Hannan R.D. The renin angiotensin system and cancer: оld dog, new tricks. Nat Rev Cancer 2010;10(11):745–59. DOI: 10.1038/nrc2945. PMID: 20966920.
38. Yasumatsu R., Nakashima T., Masuda M. et al. Effects of the angiotensin-I converting enzyme inhibitor perindopril on tumor growth and angiogenesis in head and neck squamous cell carcinoma cells. J Cancer Res Clin Oncol 2004;130(10):567–73. DOI: 10.1007/s00432-004-0582-7. PMID: 15449186.
39. Kosaka T., Miyajima A., Takayama E. et al. Angiotensin II type 1 receptor antagonist as an angiogenic inhibitor in prostate cancer. Prostate 2007;67(1): 41–9. DOI: 10.1002/pros.20486. PMID: 17044086.
40. Tamarat R., Silvestre J.S., Kubis N. et al. Endothelial nitric oxide synthase lies downstream from angiotensin II-induced angiogenesis in ischemic hindlimb. Hypertension 2002;39(3):830–5. PMID: 11897773.
41. Dolley-Hitze T., Jouan F., Martin B. et al. Angiotensin-2 receptors (AT1-R and AT2-R), new prognostic factors for renal clear-cell carcinoma? Br J Cancer 2010;103(11):1698–705. DOI: 10.1038/sj.bjc.6605866. PMID: 21102591.
42. Ager E.I., Neo J., Christophi C. The renin-angiotensin system and malignancy. Carcinogenesis 2008;29(9): 1675–84. DOI: 10.1093/carcin/bgn171. PMID: 18632755.
43. Паровичникова Е.Н., Ходунова Е.Е., Савченко В.Г. и др. Маркеры апоптоза в CD34-позитивных клетках при острых лейкозах. Клиническая онкогематология. Фундаментальные исследования и клиническая практика 2013;6(4):373–8. [Parovichnikova E.N., Khodunova E.E., Savchenko V.G. et al. Apoptotic markers in CD34-positive cells in acute leukemias. Klinicheskaya onkogematologiya. Fundamentalnye issledovaniya i klinicheskaya praktika = Clinical Oncohematology. Basic Research and Clinical Practice 2013;6(4):373–8. (In Russ.)].
44. Albayrak M., Celebi H., Albayrak A. et al. Elevated serum angiotensin converting enzyme levels as a reflection of bone marrow renin-angiotensin system activation in multiple myeloma. J Renin Angiotensin Aldosterone Syst 2012;13(2):259–64. DOI: 10.1177/1470320312437070. PMID: 22345095.
45. Savary K., Michaud A., Favier J. et al. Role of the renin-angiotensin system in primitive erythropoiesis in the chick embryo. Blood 2005;105(1):103–10. DOI: 10.1182/blood-2004-04-1570. PMID: 15367438.
Review
For citations:
Kanaeva M.L., Galtseva I.V., Nakastoev I.M., Balzhanova Y.B., Gribanova E.O., Parovichnikova E.N., Savchenko V.G. RENIN-ANGIOTENSIN SYSTEM IN REGULATION OF HEMATOPOIESIS. Oncohematology. 2017;12(4):50-56. (In Russ.) https://doi.org/10.17650/1818-8346-2017-12-4-50-56