Preview

Oncohematology

Advanced search

CLINICAL AND LABORATORY FEATURES OF ESSENTIAL THROMBOCYTOSIS AND PRIMARY MYELOFIBROSIS DEPENDING ON JAK2 AND CALR1 MUTATION STATUS

https://doi.org/10.17650/1818-8346-2017-12-3-8-16

Abstract

Introduction. JAK2V617F mutation is detected in approximately 50 % of patients with essential thrombocytosis (ET) and primary myelofibrosis (PMF). In 2013 most of the JAK2 negative patients showed mutations in the CALR gene. Diagnostic value of JAK2 and CALR mutations is high, but their prognostic significance is not sufficiently clear. Data on impact of JAK2 and CALR mutational status on thrombotic complications in ET and myelofibrosis patients are contradictory.

The aim of the study was to identify clinical and laboratory features in patients with ET and PMF in accordance with the mutational status of JAK2V617F and CALR gene.

Materials and methods. Patients treated in Almazov National Medical Research Center (St. Petersburg), Chuvash Republican Clinical Hospital (Cheboksary), Irkutsk Regional Clinical Hospital (Irkutsk),  Kirov Research Institute of Hematology and Blood Transfusion (Kirov) was included in the retrospective study. CALR mutation (1 and 2 types), MPL W515L/K and JAK2V617F mutation were detected in peripheral blood cells.

Results. We identified that 21 % (n = 16) of ET patients had thrombotic complications, and they occurred more often among JAK2V617F positive patients (p <0.05). The median of hemoglobin level in PMF was the lowest in the group of triple negative patients. The level of leukocytes in PMF was higher in the group of triple negative patients than in the group with mutated CALR (p = 0.014).

Conclusion. JAK2V617F mutation in ET patients was associated with a high risk of thrombosis. Patients with CALR mutations may have a favorable prognosis regarding to thrombotic complications. Some laboratory features of CALR mutations in ET and PMF patients have been revealed.

About the Authors

E. G. lisina
Chuvash Republican Clinical Hospital
Russian Federation

9 Moscovskiy prospect, Cheboksary, Chuvash Republic, 428018



N. T. Siordiya
Almazov National Medical Research Center
Russian Federation

2 Akkuratova str., St. Petersburg, 197341



P. A. Butylin
Almazov National Medical Research Center
Russian Federation

2 Akkuratova str., St. Petersburg, 197341



A. A. Silyutina
Almazov National Medical Research Center
Russian Federation

2 Akkuratova str., St. Petersburg, 197341



N. M. Matyukhina
Almazov National Medical Research Center
Russian Federation

2 Akkuratova str., St. Petersburg, 197341



O. M. Senderova
“Badge of Honor” Irkutsk Regional Clinical Hospital
Russian Federation

100 Yubileyny microrayon, Irkutsk, 664049



E. S. Fokina
Kirov Scientific Research Institute of Hematology and Blood Transfusion
Russian Federation

72 Krasnoarmeiskaya str., Kirov, 610027



V. A. Ovsepyan
Kirov Scientific Research Institute of Hematology and Blood Transfusion
Russian Federation

72 Krasnoarmeiskaya str., Kirov, 610027



E. G. Lomaia
Almazov National Medical Research Center
Russian Federation

2 Akkuratova str., St. Petersburg, 197341



A. Yu. Zaritskiy
Almazov National Medical Research Center
Russian Federation

2 Akkuratova str., St. Petersburg, 197341



References

1. Baxter E.J., Scott L.M., Campbell P.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disor-ders. Lancet 2005;365:1054–1056. DOI: 10.1016/S0140-6736(05)71142-9. PMID: 15781101.

2. James C., Ugo V., Le Couedic J.P. et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature 2005;434(7037):1144–1148. DOI: 10.1038/nature03546. PMID: 15793561.

3. Levine R.L., Wadleigh M., Cools J. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7(4):387–397. DOI: 10.1016/j.ccr.2005.03.023. PMID: 15837627.

4. Kralovics R., Passamonti F., Buser A.S. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779–1790. DOI: 10.1056/NEJMoa051113. PMID: 15858187.

5. Levine R.L., Belisle C., Wadleigh M. et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveals a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hema-topoiesis. Blood 2006;107(10):4139–4141. DOI: 10.1182/blood-2005-09-3900. PMID: 16434490.

6. Antonioli E., Guglielmelli P., Pancrazzi A. et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythe-mia. Leukemia 2005;19:1847–1849. DOI: 10.1038/sj.leu.2403902. PMID: 16079890.

7. Campbell P.J., Scott L.M., Buck G. et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status:a prospective study. Lancet 2005;366:1945–1953. DOI: 10.1016/S0140-6736(05)67785-9. PMID: 16325696.

8. Jones A.V., Kreil S., Zoi K. et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005;106(6):2162–2168. DOI: 10.1182/blood-2005-03-1320. PMID: 15920007.

9. Wolanskyj A.P., Lasho T.L., Schwager S.M. et al. JAK2 mutation in essential thrombocythaemia: clinical associations and longterm prognostic relevance. Br J Haematol 2005;131(2):208–213. DOI: 10.1111/j.1365-2141.2005.05764.x. PMID: 16197451.

10. Campbell P.J., Griesshammer M., Dohner K. et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 2006;107:2098–2100. DOI: 10.1182/blood-2005-08-3395. PMID: 16293597.

11. Tefferi A., Lasho T.L., Schwager S.M. et al. The JAK2(V617F) tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br J Haematol 2005;131(3):320–328. DOI: 10.1111/j.1365-2141.2005.05776.x. PMID: 16225651.

12. Passamonti F., Elena C., Schnittger S. et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 2011;117(10):2813–6. DOI: 10.1182/blood-2010-11-316810. PMID: 21224469.

13. Kisseleva T., Bhattacharya S., Braunstein J., Schindler C.W. Signaling through the JAK/ STAT pathway, recent advances and future challenges. Gene 2002;285(1–2):124. PMID: 12039028.

14. Sandberg E.M., Wallace T.A., Godeny M.D. et al. Jak2 tyrosine kinase: a true jak of all trades? Cell Biochem Biophys 2004;41(2):207–232. PMID: 15475610.

15. Zhao R., Xing S., Li Z. et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005;280(24):22788–22792. DOI: 10.1074/jbc.C500138200. PMID: 15863514.

16. Staerk J., Lacout C., Sato T. et al. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 2006;107(5):1864–1871. DOI: 10.1182/blood-2005-06-2600. PMID: 16249382.

17. Pikman Y., Lee B.H., Mercher T. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3(7):e270. DOI: 10.1371/journal.pmed.0030270. PMID: 16834459.

18. Pardanani A.D., Levine R.L., Lasho T. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108(10):3472–6. DOI: 10.1182/blood-2006-04-018879. PMID: 16868251.

19. Klampfl T., Gisslinger H., Harutyunyan A.S. et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N Engl J Med 2013;369(25):2379–2390. DOI: 10.1056/NEJMoa1311347. PMID: 24325356.

20. Nangalia J., Massie C.E., Baxter E.J. et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N Engl J Med 2013;369(25):2391–2405. DOI: 10.1056/NEJMoa1312542. PMID: 24325359.

21. Rumi E., Pietra D., Ferretti V. et al. Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014;123(10):1544–1551. DOI: 10.1182/blood-2013-11-539098. PMID: 24366362.

22. Cabagnols X., Defour J.P., Ugo V. et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia 2015;29:249–252. DOI: 10.1038/leu.2014.270. PMID: 25212275.

23. Chachoua I., Pecquet C., El-Khoury M. et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 2016;127(10):1325–35. DOI: 10.1182/blood-2015-11-681932. PMID: 26668133.

24. Araki M., Yang Y., Masubuchi N. et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 2016;127(10):1307–1316. DOI: 10.1182/blood-2015-09-671172. PMID: 26817954.

25. Abdel-Wahab O., Manshouri T., Patel J. et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 2010;70(2):447–452. DOI: 10.1158/0008-5472.CAN-09-3783. PMID: 20068184.

26. Delhommeau F., Dupont S., Della Valle V. et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360(22):2289–2301. DOI: 10.1056/NEJMoa0810069. PMID: 19474426.

27. Zhang S.J., Rampal R., Manshouri T. et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 2012;119(19):4480–4485. DOI: 10.1182/blood-2011-11-390252 PMID: 22431577.

28. Tefferi A., Lasho T.L., Finke C.M. et al. CALR vs JAK2 vs MPL-mutated or triplenegative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014;28(7):1472–1477. DOI: 10.1038/leu.2014.3. PMID: 24402162.

29. Rampal R., Ahn J., Abdel-Wahab O. et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA 2014;111(50):E5401–E5410. DOI: 10.1073/pnas.1407792111. PMID: 25516983.

30. Skoda R.C., Duek A., Grisouard J. Pathogenesis of myeloproliferative neoplasms. Exp Hematol 2015;43(8):599–608. DOI: 10.1016/j.exphem.2015.06.007. PMID: 26209551.

31. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–2405. DOI: 10.1182/blood-2016-03-643544. PMID: 27069254.

32. Rumi E., Pietra D., Pascutto C. et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014;124(7):1062–9. DOI: 10.1182/blood-2014-05-578435. PMID: 24986690.

33. Tefferi A., Wassie E.A., Lasho T.L. et al. Calreticulin mutations and longterm survival in essential thrombocythemia. Leukemia 2014;28(12):2300–3. DOI: 10.1038/leu.2014.148. PMID: 24791854.

34. Andrikovics H., Krahling T., Balassa K. et al. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. Haematologica 2014;99(7):1184–1190. DOI: 10.3324/haematol.2014.107482. PMID: 24895336.

35. Roques M., Park J.H., Minello A. et al. Detection of the CALR mutation in the diagnosis of splanchnic vein thrombosis. Br J Haematol 2015;169(4):601–603. DOI: 10.1111/bjh.13235. PMID: 25413838.

36. Turon F., Cervantes F., Colomer D. et al. Role of calreticulin mutations in the aetiological diagnosis of splanchnic vein thrombosis. J Hepatol 2015;62(1):72–74. DOI: 10.1016/j.jhep.2014.08.032. PMID: 25173966.

37. Sazawal S., Singh N., Mahapatra M. et al. Calreticulin mutation profile in Indian patients with primary myelofibrosis. Hematology 2015;20(10):567–570. DOI: 10.1179/1607845415Y.0000000018. PMID: 25959795.

38. Tefferi A., Lasho T.L., Finke C. et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia 2014;28(7):1568–1570. DOI: 10.1038/leu.2014.83. PMID: 24569778.

39. Tefferi A., Wassie E.A., Guglielmelli P. et al. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 2014;89(8):E121–E124. DOI: 10.1002/ajh.23743. PMID: 24753125.

40. Tefferi A., Vardiman J.W. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008;22(1):14–22. DOI: 10.1038/sj.leu.24049550. PMID: 17882280.

41. Cervantes F., Dupriez B., Pereira A. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113(13):2895–901.

42. Passamonti F., Cervantes F., Vannucchi A.M. et al. A dynamic prognostic model to predict survival in primary myelofibrosis:a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010;115(9):1703–8.

43. Al Assaf C., Van Obbergh F., Billiet J. et al. Analysis of phenotype and outcome in essential thrombocythemia with CALR or JAK2 mutations. Haematologica 2015;100(7):893–897. DOI: 10.3324/haematol.2014.118299. PMID: 25934766.


Review

For citations:


lisina E.G., Siordiya N.T., Butylin P.A., Silyutina A.A., Matyukhina N.M., Senderova O.M., Fokina E.S., Ovsepyan V.A., Lomaia E.G., Zaritskiy A.Yu. CLINICAL AND LABORATORY FEATURES OF ESSENTIAL THROMBOCYTOSIS AND PRIMARY MYELOFIBROSIS DEPENDING ON JAK2 AND CALR1 MUTATION STATUS. Oncohematology. 2017;12(3):8-16. (In Russ.) https://doi.org/10.17650/1818-8346-2017-12-3-8-16

Views: 32409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)