Circulating tumor DNA detection (liquid biopsy): prospects in oncology
https://doi.org/10.17650/1818-8346-2014-9-4-28-36
Abstract
Modern research techniques allows tumor studying in almost any level: protein expression, structural changes of DNA, RNA, epigenetic changes, activity of signaling pathways, microenvironment, interaction with the immune system, etc. However, tumor samples are obtained as 100 years ago – by tumor biopsy prior to treatment. Based on available data about intratumoral heterogeneity and tumor changes during treatment, it may be one of the factors braking to obtain required information of tumor biology. According to study, the analysis of circulating tumor DNA (ctDNA) allows to hope to overcome the key limitations of routine biopsy. One of the key benefits of ctDNA analysis is the ability to a more comprehensive tumor investigation, while maintaining a high level of specificity, almost as well as a routine biopsy. Detection sensitivity of ctDNA continues to increase due to the development of new technology. The study of ctDNA may lead to breakthrough results in understanding of tumors molecular heterogeneity, development of resistance to anticancer therapy and ways to overcome it, screening and a number of other key areas of modern oncology.
About the Authors
N. V. ZhukovRussian Federation
A. R. Zaretskiy
Russian Federation
S. A. Lukyanov
Russian Federation
S. A. Rumyantsev
Russian Federation
References
1. Gerlinger M., Rowan A.J., Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366(10):883–92.
2. Taniguchi K., Okami J., Kodama K. et al. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer sci 2008;99(5):929–35.
3. Greaves M., Maley C.C. Clonal evolution in cancer. Nature 2012;481(7381):306–13.
4. Campbell L.L., Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 2007;6(19):2332–8.
5. Desai J., Shankar S., Heinrich M.C. et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res 2007;13 (18 Pt 1):5398–405.
6. Wardelmann E., Merkelbach-Bruse S., Pauls K. et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clinical Cancer Res 2006;12(6):1743–9.
7. Raetz E.A., Borowitz M.J., Devidas M. et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: A Children's Oncology Group Study. J Clin Oncol 2008;26(24):3971–8.
8. Jahr S., Hentze H., Englisch S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001;61(4):1659–65.
9. Mandel P., Metais P. Les acides nucleiques du plasma sanguin chez l'homme. C R Seances Soc Biol Fil 1948;142(3–4):241–3.
10. Lo Y.M.D., Hjelm N.M., Fidler C. et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 1998;339(24):1734–8.
11. Papageorgiou E.A., Karagrigoriou A., Tsaliki E. et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 2011;17(4):510–3.
12. Schwarzenbach H., M ller V., Milde-Langosch K. et al. Evaluation of cell-free tumor DNA and RNA in patients with breast cancer and benign breast disease. Mol BioSystems 2011;7(10):2848–54.
13. Hashad D., Sorour A., Ghazal A., Talaat I. Free circulating tumor DNA as a diagnostic marker for breast cancer. J Clin Lab Anal 2012;26(6):467–72.
14. Delgado P.O., Alves B.C., Gehrke F.S. et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumor Biol 2013;34(2):983–6.
15. Stroun M., Lyautey J., Lederrey C. et al. About the possible origin and mechanismof circulating DNA: Apoptosis and active DNA release. Clin Chim Acta 2001;313(1–2): 139–42.
16. Diehl F., Schmidt K., Choti M.A. et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2007;14(9):985–90.
17. Diehl F., Li M., Dressman D. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 2005;102(45):16368–73.
18. Daniotti M., Vallacchi V., Rivoltini L. et al. Detection of mutated BRAFV600E variant in circulating DNA of stage III–IV melanoma patients. Int J Cancer 2007;120(11):2439–44.
19. Morgan S.R., Whiteley J., Donald E. et al. Comparison of KRAS mutation assessment in tumor DNA and circulating free DNA in plasma and serum samples. Clin Med Insights Pathol 2012;5:15–22.
20. Kimura H., Kasahara K., Kawaishi M. et al. Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 2006;12(13):3915–21.
21. Punnoose E.A., Atwal S., Liu W. et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: Association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 2012;18(8):2391–401.
22. Higgins M.J., Jelovac D., Barnathan E. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res 2012;18(12): 3462–9.
23. Leary R.J., Kinde I., Diehl F. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2010;2(20):20ra14.
24. Kinde I., Wu J., Papadopoulos N. et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 2011;108(23):9530–5.
25. Leary R.J., Sausen M., Kinde I. et al. Detection of chromosomal alterations in the circulation of cancer patients with wholegenome sequencing. Sci Transl Med 2012;4(162):162ra154.
26. Chan K.C.A., Jiang P., Zheng Y.W. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Сhemistry 2013;59(1): 211–24.
27. McBride D.J., Orpana A.K., Sotiriou C. et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 2010;49(11):1062–9.
28. Beck J., Urnovitz H.B., Mitchell W.M., Schütz E. Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Mol Cancer Res 2010;8(3):335–42.
29. Murtaza M., Dawson S.J., Tsui D.W. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013;497(7447):108–12.
30. Bailey V.J., Keeley B.P., Zhang Y. et al. Enzymatic Incorporation of Multiple Dyes for Increased Sensitivity in QD–FRET Sensing for DNA Methylation Detection. Chembiochem 2010;11(1):71–4.
31. Weaver K.D., Grossman S.A., Herman J.G. Methylated tumor-specific DNA as a plasma biomarker in patients with glioma. Cancer Invest 2006;24(1):35–40.
32. Li M., Chen W.D., Papadopoulos N. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 2009;27(9):858–63.
33. Diaz L.A. Jr, Williams R.T., Wu J. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486(7404):537–40.
34. Dawson S.J., Rosenfeld N., Caldas C. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013;368(13):1199–209.
35. Forshew T., Murtaza M., Parkinson C. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012;4(136):136ra68.
36. Li M., Diehl F., Dressman D. et al. BEAMing up for detection and quantification of rare sequence variants. Nat Met 2006;3(2):95–7.
37. Thomas R.K., Nickerson E., Simons J.F. et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 2006;12(7):852–5.
38. Wahl R.L., Jacene H., Kasamon Y., Lodge M.A. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009;50(Suppl 1):122S–50S.
39. Eisenhauer E.A., Therasse P., Bogaerts J. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45(2):228–47.
40. Benjamin R.S., Choi H., Macapinlac H.A. et al. We should desist using RECIST, at least in GIST. J Clin Oncol 2007;25(13):1760–4.
41. Riedinger J.M., Wafflart J., Ricolleau G. et al. CA 125 half-life and CA 125 nadir during induction chemotherapy are independent predictors of epithelial ovarian cancer outcome: results of a French multicentric study. Ann Oncol 2006;17(8):1234–8.
42. Yoshimasu T., Maebeya S., Suzuma T. et al. Disappearance curves for tumor markers after resection of intrathoracic malignancies. Int J Biol Markers 1998;14(2):99–105.
43. Ito K., Hibi K., Ando H. et al. Usefulness of analytical CEA doubling time and half-life time for overlooked synchronous metastases in colorectal carcinoma. Jpn J Clin Oncol 2002;32(2):54–8.
44. Shinozaki M., O'Day S.J., Kitago M. et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res 2007;13(7):2068–74.
45. Goncalves R., Bose R. Using multigene tests to select treatment for early-stage breast cancer. J Natl Compr Canc Netw 2013;11(2):174–82.
46. Mouliere F., Robert B., Arnau Peyrotte E. et al. High fragmentation characterizes tumor-derived circulating DNA. PLoS One 2011;6(9):e23418.
47. Antonescu C.R., Besmer P., Guo T. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11(11):4182–90.
48. Pao W., Miller V.A., Politi K.A. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2(3):e73.
49. Branford S., Rudzki Z., Walsh S. et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003;102(1):276–83.
50. Taniguchi K., Uchida J., Nishino K. et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 2011;17(24):7808–15.
51. Misale S., Yaeger R., Hobor S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486(7404):532–6.
Review
For citations:
Zhukov N.V., Zaretskiy A.R., Lukyanov S.A., Rumyantsev S.A. Circulating tumor DNA detection (liquid biopsy): prospects in oncology. Oncohematology. 2014;9(4):28-36. (In Russ.) https://doi.org/10.17650/1818-8346-2014-9-4-28-36