Programmed cell death of platelets during their overactivation
https://doi.org/10.17650/1818-8346-2014-9-3-63-66
Abstract
Programmed cell death – it is a cell death by a strictly defined mechanism with possible impact on him and, due to this, the death control, including using of pharmacological agents. Currently known many different types of cell death, but only two basic types of cell death are adequately characterized: apoptosis and programmed necrosis. Platelets are one of the key components of the blood clotting process. A group of platelets, exposing phosphatidylserine (PS), with the programmed cell death characteristics appears at their critical agonist-induced activation. This overactivation of platelets accompanied by subsequent cell death is not completely characterized cellular processes. We view the platelets overactivation in comparison with the main known types of cell death because the platelets group exposing PS is important for blood
coagulation processes, accelerating by several orders the plasma coagulation, and important for the thrombus formation.
About the Authors
E. O. ArtemenkoRussian Federation
A. N. Sveshnikova
Russian Federation
M. A. Panteleev
Russian Federation
References
1. Vaux D. L., Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci USA 1996;93(6):2239–44.
2. Galluzzi L., Vitale I., Abrams J. M. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012;19(1): 107–20.
3. Kroemer G., El-Deiry W. S., Golstein P. et al.; Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005;12 Suppl 2:1463–7.
4. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239–57.
5. Krysko D. V., Vanden Berghe T., D'Herde K., Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008;44(3):205–21.
6. Taylor R. C., Cullen S. P., Martin S. J. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9(3):231–41.
7. Han S. I., Kim Y. S., Kim T. H. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep 2008;41(1):1–10.
8. Gross A., Yin X. M., Wang K. et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1 / Fas death. J Biol Chem 1999;274(2):1156–63.
9. Liu X., Kim C. N., Yang J. et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell 1996;86(1):147–57.
10. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146(1):3–15.
11. Vanden Berghe T., Declercq W., Vandenabeele P. NADPH oxidases: new players in TNF-induced necrotic cell death. Mol Cell 2007;26(6):769–71.
12. Declercq W., Vanden Berghe T., Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138(2):229–32.
13. Zhang D., Lin J., Han J. Receptorinteracting protein(RIP) kinase family. Cell Mol Immunol 2010;7(4):243–9.
14. Maiuri M. C., Zalckvar E., Kimchi A., Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007;8(9):741–52.
15. Denton D., Nicolson S., Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 2012;19(1):87–95.
16. Duerschmied D., Bode C., Ahrens I. Immune functions of platelets. Thromb Haemost 2014;112(4):678–91.
17. Kaltalioglu K., Coskun-Cevher S. A bioactive molecule in a complex wound healing process: platelet-derived growth factor. Int J Dermatol 2014 Oct 14. [Epub ahead of print].
18. Dale G. L., Friese P., Batar P. et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 2002;415(6868):175–9.
19. Mann K. G., Nesheim M. E., Church W. R. et al. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990;76(1):1–16.
20. Dale G. L. Coated-platelets: an emerging component of the procoagulant response. J Thromb Haemost 2005;3(10):2185–92.
21. Topalov N. N., Kotova Y. N., Vasil'ev S.A., Panteleev M. A. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br J Haematol 2012;157(1):105–15.
22. Mattheij N. J., Gilio K., van Kruchten R. et al. Dual mechanism of integrin бIIbв3 closure in procoagulant platelets. J Biol Chem 2013;288(19):13325–36.
23. Yakimenko A. O., Verholomova F. Y., Kotova Y. N. et al. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys J 2012;102(10):2261–9.
24. Shcherbina A., Remold-O'Donnell E. Role of caspase in a subset of human platelet activation responses. Blood 1999;93(12):4222–31.
25. Jackson S. P., Schoenwaelder S. M. Proco agulant platelets: are they necrotic? Blood 2010;116(12):2011–8.
26. Orrenius S., Zhivotovsky B., Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003;4(7):552–65.
27. Rasola A., Bernardi P. Mitochondrial permeability transition in Ca(2+) – dependent apoptosis and necrosis. Cell Calcium 2011;50(3):222–33.
28. Wang K. K. Calpain and caspase: can you tell the difference? Trends Neurosci 2000;23(1):20–6.
29. Mason K. D., Carpinelli M. R., Fletcher J. I. et al. Programmed anuclear cell death delimits platelet life span. Cell 2007;128(6):1173–86.
30. Shiri R., Yari F., Ahmadinejad M. et al. The caspase-3 inhibitor(peptide Z-DEVDFMK) affects the survival and function of platelets in platelet concentrate during storage. Blood Res 2014;49(1):49–53.
Review
For citations:
Artemenko E.O., Sveshnikova A.N., Panteleev M.A. Programmed cell death of platelets during their overactivation. Oncohematology. 2014;9(3):63-66. (In Russ.) https://doi.org/10.17650/1818-8346-2014-9-3-63-66