Preview

Oncohematology

Advanced search

Platelets and hemostasis

https://doi.org/10.17650/1818-8346-2014-9-2-65-73

Abstract

Platelets are anuclear cell fragments playing important role in hemostasis, termination of bleeding after damage, as well as in pathological thrombus formation. The main action of platelets is the formation of aggregates, overlapping the injury. They obtained the ability to aggregate by the transition process called activation. Despite the relatively simple and definite function platelet structure is very difficult: they have almost a full set of organelles, including the endoplasmic reticulum, mitochondria and other entities. When activated platelets secrete various granules interact with plasma proteins and red blood cells and other tissues. Their activation is controlled by multiple receptors and complex signaling cascades. In this review platelet structure, mechanisms of its functioning in health and disease, diagnostic methods of platelet function and approaches to their correction were considered. Particular attention will be given to those areas of the science of platelets, which still lay hidden mysteries.

About the Authors

M. A. Panteleev
Theoretical Problems Center of Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow; Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia, Moscow; Lomonosov Moscow State University, Faculty of Physics, Moscow; Hematological Research Center, Ministry of Health of Russia, Moscow; HemaCore Company, Moscow
Russian Federation


A. N. Sveshnikova
Theoretical Problems Center of Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow; Federal Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitriy Rogachev, Ministry of Health of Russia, Moscow; Lomonosov Moscow State University, Faculty of Physics, Moscow;
Russian Federation


References

1. Sixma J. J., van den Berg A. The haemostatic plug in haemophilia A: a morphological study of haemostatic plug formation in bleeding time skin wounds of patients with severe haemophilia A. BrJ Haematol 1984;58(4):741–53.

2. Maxwell M. J., Westein E., Nesbitt W. S. et al. Identification of a 2‑stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 2007;109(2):566–76.

3. Мазуров А. В. Физиология и патология тромбоцитов. М.: ГЭОТАР-Медиа, 2011. 480 с.

4. Michelson A. D. Platelets. 3rd ed., 2013. London; Waltham, MA: Academic Press, xliv, 1353 p.

5. Ohlmann P., Eckly A., Freund M. et al. ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Galphaq. Blood 2000;96(6):2134–9.

6. White J. G. Electron microscopy methods for studying platelet structure and function. Methods Mol Biol 2004;272:47–63.

7. van Nispen tot Pannerden H., de Haas F., Geerts W. et al. The platelet interior revisited: electron tomography reveals tubular alphagranule subtypes. Blood 2010;116(7):1147–56.

8. Blair P., Flaumenhaft R. Platelet alpha- granules: basic biology and clinical correlates. Blood Rev 2009;23(4):177–89.

9. Abaeva A. A., Canault M., Kotova Y. N. et al. Procoagulant platelets form an alphagranule protein-covered «cap» on their surface that promotes their attachment to aggregates. J Biol Chem 2013;288(41):29621–32.

10. Kaplan Z. S., Jackson S. P. The role of platelets in atherothrombosis. Hematology Am Soc Hematol duc Program 2011;2011:51–61.

11. Tanaka K. A., Key N. S., Levy J. H. Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 2009;108(5): 1433–46.

12. Panteleev M. A., Ananyeva N. M., Greco N. J. et al. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J Thromb Haemost 2005;3(11):2545–53.

13. Topalov N. N., Kotova Y. N., Vasil'ev S. A., Panteleev M. A. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br J Haematol 2012;157(1):105–15.

14. Yakimenko A. O., Verholomova F. Y., Kotova Y. N. et al. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys J 2012;102(10):2261–9.

15. Kotova Y. N., Ataullakhanov F. I., Panteleev M. A. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5'diphosphate acting via the P2Y12 receptor. J Thromb Haemost 2008;6(9):1603–5.

16. Uijttewaal W. S., Nijhof E. J., Bronkhorst P. J. et al. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am J Physiol 1993;264(4 Pt 2):H1239–44.

17. Tokarev A. A., Butylin A. A., Ataullakhanov F. I. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J 2011;100(4):799–808.

18. Turitto V. T., Weiss H. J. Red blood cells: their dual role in thrombus formation. Science 1980;207(4430):541–3.

19. Nieswandt B., Brakebusch C., Bergmeieret W. et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 2001;20(9):2120–30.

20. Westein E., de Witt S., Lamers M. et al. Monitoring in vitro thrombus formation with novel microfluidic devices. Platelets 2012;23(7):501–9.

21. Favaloro E. J., Bonar R. External quality assessment / proficiency testing and internal quality control for the PFA-100 and PFA-200: an update. Semin Thromb Hemost 2014;40(2):239–53.

22. Kristensen S. D., Würtz M., Grove E. L. t al., Contemporary use of glycoprotein IIb / IIIa inhibitors. Thromb Haemost 2012;107(2):215–24.

23. Ferri N., Corsini A., Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on pharmacokinetic and pharmacodynamic properties. Drugs 2013;73(15):1681–709.

24. Bode A. P., Fischer T. H. Lyophilized platelets: fifty years in the making. Artif Cells Blood Substit Immobil Biotechnol 2007;35(1):125–33.

25. Heemskerk J. W., Mattheij N. J., Cosemans J. M. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013;11(1):2–16.

26. Tosenberger A., Ataullakhanov F., Bessonov N. et al. Modelling of thrombus growth in flow with a DPD-PDE method. J Theor Biol 2013;337:30–41.

27. Bäck J., Sanchez J., Elgue G. et al. Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 2010;391(1):11–7.

28. Müller F., Mutch N. J., Schenk W. A. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139(6):1143–56.

29. Faxälv L., Boknäs N., Ström J. O. et al. Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood 2013;122(23):3818–24.

30. Hagedorn I., Schmidbauer S., Pleines I. et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 2010;121(13):1510–7.

31. Sinauridze E. I., Kireev D. A., Popenko N. Y. et al. Platelet microparticle membranes have 50- to 100‑fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007;97(3):425–34.

32. Hargett L. A., Bauer N. N. On the origin of microparticles: From «platelet dust» to mediators of intercellular communication. Pulm Circ 2013;3(2):329–40.

33. Riedl J., Pabinger I., Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2014;34(1):54–62.

34. Sharma D., Brummel-Ziedins K. E., Bouchard B. A., Holmes C. E. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol 2014;229(8):1005–15.


Review

For citations:


Panteleev M.A., Sveshnikova A.N. Platelets and hemostasis. Oncohematology. 2014;9(2):65-73. (In Russ.) https://doi.org/10.17650/1818-8346-2014-9-2-65-73

Views: 12023


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)