Preview

Онкогематология

Расширенный поиск

Биологические свойства гемопоэтических стволовых клеток пуповинной крови

https://doi.org/10.17650/1818-8346-2011-6-1-64-75

Аннотация

Обзор литературы посвящен анализу эволюции изучения пуповинной крови как источника гемопоэтических стволовых клеток для трансплантации. Поэтапно описано развитие технологий определения и выделения стволовых клеток, оценки их способности к пролиферации и дифференцировке и функциональных характеристик с помощью методов культивирования in vitro и с помощью выращивания in vivo на животных моделях. Описаны различия стволовых клеток пуповинной крови в сравнении с другими тканевыми источниками. Показана роль микроокружения для самообновления и дифференцировки стволовых клеток. Исследованы возможности моделирования биологических свойств стволовых клеток на примере использования векторной конструкции на основе вируса иммунодефицита человека 1 типа, содержащей гены Notch, для регулирования пролиферации CD133+ и CD34+ гемопоэтических стволовых клеток пуповинной крови человека.

Об авторах

С. А. Румянцев
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия


Е. Ю. Осипова
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия


С. Е. Ипатов
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия


Т. В. Шаманская
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия


О. А. Майорова
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия


А. Г. Румянцев
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия


Список литературы

1. Gluckman E., Broxmeyer H.E., Auerbach A.D. et al. Hematopoietic reconstitution in a patient with Fanconi anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engi J Med 1989;321:1174–8.

2. Broxmeyer H.E., Kurtzberg J., Gluckman E. et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 1991;17:313–29.

3. Broxmeyer H.E., Gluckman E., Auerbach A. et al. Human umbilical cord blood: A clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning 1990:8:76–91.

4. Kohli-Kumar M., Shahidi N.T., Broxmeyer H.E. et al. Haematopoietic stem/ progenitor cell transplant in Fanconi anemia using HLA-matched sibling umbilical cord blood cells. Br J Haematol 1993;85:419–22.

5. Wagner J.E, Broxmeyer H.E., Byrd R.L. et al. Transplantation of umbilical cord blood after myeloblative therapy: Analysis of engraftment. Blood 1992;79:1874–81.

6. Wagner J.E., Kernan N.A., Steinbuch M. et al. Allogeneic sibling umbilical cord blood transplantation in forty-four children with malignant and non-malignant disease. Lancet 1995,346:214–9.

7. Broxmeyer H.E. Role of cytokines in hematopoiesis. In: Oppenheim J.J., Rossio J.L., Gearing A.J.H., eds. Clinical aspects of cytokines: Role in pathogenesis, diagnosis and therapy. New York: Oxford University Press, 1993:201–6.

8. Broxmeyer H.E., Hangoc G., Cooper S. et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation of adults. Proc Nati Acad Sci USA 1992;89:4109–13.

9. Krause D.S., Fackler M.J., Civin C.I., May W.S. CD34: Structure, biology and clinical utility. Blood 1996;87:1–13.

10. Lu L., Xiao M., Shen R.N. et al. Enrichment, characterization and responsiveness of single primitive CD34+++ human umbilical cord blood hematopoietic progenitor cells with high proliferative and replating potential. Blood 1993;81:41–8.

11. Broxmeyer H.E., Cooper S., Li Z.H. et al. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor, a ligand for the tyrosine kinase receptor Flk-1. Int JHematol 1995;62:203–15.

12. Hao Q.L., Shah A.J., Thiemann F.T. et al. A functional comparison of CD34+ CD38 cells in cord blood and bone marrow. Blood 1995;86:3745–53.

13. Mayani H., Lansdorp P.M. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 1994;83:2410–7.

14. Laver J.H., Abboud M.R., Kawashima I. et al. Characterization of c-kit expression by primitive hematopoietic progenitors in umbilical cord blood. Exp Hematol 1993;23:1515–9.

15. Rappold I., Ziegler B.L., Kohler I. et al. unctional and phenotypic characterization of cord blood and bone marrow subsets expressing Flt3 (CD 135) receptor tyrosine kinase. Blood 1997;90:111–25.

16. Broxmeyer H.E., Lu L., Cooper S. et al. Flt-3-ligand stimulates/co-stimulates the growth of myeloid stem/progenitor cells. Exp Hematol 1995;23:1121–9.

17. Traycoff C.M., Abboud M.R., Laver J. et al. Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells. Exp Hematol 1994;22:215–22.

18. Cicuttini F.M., Welch K.L, Boyd A.W. The effect of cytokines on CD34+ Rh-123 high and low progenitor cells from human umbilical cord blood. Exp Hematol 1994;22:1244–51.

19. Osawa M., Hanada K., Hamada H., Nakauchi H. Long-term lymphohematopoietic re-constitution by a single CD34-low/negative hematopoietic stem cell. Science 1996;273:242–5.

20. Bhatia M., Bonnet D., Murdoch B. et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998;4:1038–45.

21. Zanjani E.D., Almeida-Porada G., Livington A.G. et al. Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression including giving rise to CD34+ cells. Exp Hematol 1998,26:353– 0.

22. Sato Т., Laver J.H., Ogawa M. Reversible expression of CD34 by murine hemato-poietic stem cells. Blood 1999:94:2548–54.

23. Ruggieri L., Heimfeld S., Broxmeyer H.E. Cytokine-dependent ex vivo expansion of early subsets of CD34+ cord blood myeloid progenitors is enhanced by cord blood plasma, but expansion of the more mature subsets of progenitors is favored. Blood Cells 1994;120:436–54.

24. Traycoff C.M., Abboud M.R., Laver J. et al. Human umbilical cord blood hematopoietic progenitor cells: Are they the same as their adult bone marrow counterparts? Blood Cells 1994;20:382–91.

25. Hao Q.L., Zhu J., Price M.A. et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 2001;97:3683–90.

26. Phillips R.L., Ernst R.E., Brunk B. et al. The genetic program of hematopoietic stem cells. Science 2000;288:1635–40.

27. Ramalho-Santos M., Yoon S., Matsuzaki Y. et al. Sternness: Transcriptional profiling of embryonic and adult stem cells. Science 2002;298:597–600.

28. Ivanova N.B., Dimos J.T., Schaniel C. et al. A stem cell molecular signature. Science 2002;298:601–4.

29. Cooper S., Broxmeyer H.E. Clonogenic methods in vitro for the enumeration of granulocyte- macrophage progenitor cells (CFUGM) in human bone marrow and mouse bone marrow and spleen. J Tissue Culture Methods 1991;3:77–82.

30. Cooper S., Broxmeyer H.E. Measurement of interleukin-3 and other hematopoietic growth factors, such as GM-CSF, G-CSF, M-CSF, erythropoietin and the potent costimulating cytokines steel factor and Flt-3 ligand. In: Coligan J.E., Kruisbeek A.M., Margulies D.H. et al. (eds). Current protocols in immunology. Vol 1, Suppe 18. New York: John Wiley & Sons, Inc., 1996:6.4.1–6.4.20.

31. Carow С.Е., Hangoc G., Broxmeyer H.E. Human multipotential progenitor cells (CFUGEMM) have extensive replating capacity for secondary CFU-GEMM: An effect enhanced by cord blood plasma. Blood 1993;81:942–9.

32. Broxmeyer H.E., Srour E.F., Hangoc G. et al. High efficiency recovery of hemato-poietic progenitor cells with extensive proliferative and ex vivo expansion activity and of hematopoietic stem cells with NOD/SCID mouse repopulation ability from human cord blood stored frozen for 15 years. Proc Nail Acad Sci USA 2002;00:645–50.

33. Xiao M., Broxmeyer H.E., Horie M. et al. Extensive proliferative capacity of single isolated CD34+++ human cord blood cells in suspension culture. Blood Cells 1994;20;455–67.

34. Moore M.A.S., Hopkins I. Ex vivo expansions of cord blood derived stem cells and progenitors. Blood Cells 1994:20:468–81.

35. Piacibello W., Sanavio F., Garretto L. et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997;89:2644–53.

36. Lu L., Ge Y., Li Z.H. et al. CD34+++ stem/progenitor cells purified from cryopreserved normal cord blood can be transduced with high efficiency by a retroviral vector and expanded ex vivo with stable integration and expression of Fanconi anemia complementation С gene. Cell Transplant 1995;4:493–503.

37. Bhatia M., Wang J.C.Y., Kapp U. et al. Purification of primitive human hematopoietic cells capable of repopulating immunedeficient mice. Proc Nati Acad Sci USA 1997;94:5320–5.

38. Hogan C.J., Shpall E.J., McNulty O. et al. Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 1997;90:85–96.

39. Wang J.C.Y., Doedens M., Dick J.E. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997;89:3919–24.

40. Horn P.A., Thomasson B.M., Wood B.L. et al. Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Blood 2003;102:4329–35.

41. Yahata Т., Ando К., Sato Т. et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 2003;101:2905–13.

42. Mazurier F., Doedens M., Gan O.I. et al. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003;9:959–63.

43. Vaziri H., Dragowska W., Allsopp R.C. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc Nati Acad Sci USA 1994;91:9857–60.

44. Harrison D.E., Astle C.M. Short- and long-term multilineage repopulating hematopoietic stem cells in late fetal and newborn mice: Models for human umbilical cord blood. Blood 1997;90:174–81.

45. Movassagh M., Caillot L., Baillou C. et al. Optimization of the cycling of clonogenic and primitive cord blood progenitors by various growth factors. Stem Cells 1997;15:214–22.

46. Calvi L.M., Adams G.B., Weibrecht K.W. et al. Osteoblastic cells regulate the haema topoietic stem cell niche. Nature 2003;425:841–6.

47. Zhang J., Niu C., Ye L. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836–41.

48. Bellido T., Jilka R.L., Boyce B.F. et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens: The role of the androgen receptor. J Clin Invest 1995;95:2886–95.

49. Jilka R.L., Passeri G., Girasole G. et al. Estrogen loss causes an upregulation of several hematopoietic bone marrow progenitors in the mouse: A mediating role of interleukin-6. Exp Hematol 1995;25:500–6.

50. Temple S. Embryonic stem cell selfrenewal, analyzed. Cell 2003;15:247–53.

51. Kyba M., Daley G.Q. Hematopoiesis from embryonic stem cells: Lessons from and for ontogeny. Exp Hematol 2003;31:994–1006.

52. Bailey A.S., Fleming W.H. Converging roads: Evidence for an adult hemangioblast. Exp Hematol 2003;31:987–93.

53. Broxmeyer H.E. Regulation of hematopoiesis by chemokine family members. J Hematol 2001;74:9–17.

54. Bagby G.C. Jr, Henrich M. Growth factors, cytokines and the control of hematopoiesis. In: Hoffman R., Shattil S., Furie B. et al. (eds). Hematology: Basic principles and practice, 3rd ed. New York: Churchill Livingstone, 1999:154–201.

55. Mantel C.R., Gelfanov V.M., Kim Y.J. et al. P21waf-1-Chk1 pathway monitors G1 phase microtubule integrity and is crucial for restriction point transition. Cell Cycle 2002;1(5):327–36.

56. Lyman S.D., Jacobsen S.E.W. C-kit ligand and Flt3 ligand: Stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998;91:1101–34.

57. Li L., Milner L.A., Deng Y. et al. The human homolog of Rat Jagged 1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with notch 1. Immunity 1998;8:43–55.

58. Milner L.A., Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: Evidence and speculation. Blood 1999;93:2431–48.

59. Varnum-Finney B., Wu L., Yu M. et al. Immobilization of Notch ligand, Delta-1, is required for induction of Notch signaling. J Cell Sci 2000:113:4313–18.

60. Karanu F.N., Murdoch В., Miyabayashi Т. et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 2001;97:1960–7.

61. Kojika S., Griffin J.D. Notch receptors and hematopoiesis. Exp Hematol 2001;29:1041–52.

62. Maillard I., He Y., Pear W.S. From the yolk sac to the spleen: New roles for notch in regulating hematopoiesis. Immunity 2003;18:587–9.

63. Kumano K., Chiba S., Kunisata A. et al. Notch1 but not notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 2003; 18:699–711.

64. Reya T., Duncan A.W., Allies L. et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature 2003;423:409–14.

65. Willert K., Brown J.D., Danenberg E. et al. Wnt proteins are lipid-modifled and can act as stem cell growth factors. Nature 2003;423:448–52.

66. Stier S., Cheng T., Forkert R. et al. Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells. Blood 2003;102:1260–6.

67. Buske С., Feuring-Buske M., Abramovich С. et al. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood 2002;100:862–8.

68. Krosi J., Austin P., Beslu N. et al. In vitro expansion of hematopoietic stem cells by re-combinant TAT-HOXB4 protein. Nat Med 2003;9:1428–32.

69. Amsellem S., Pflumio F., Bardinet D. et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003;9:1423–7.

70. Lessard J., Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003;423:255–60.

71. Ueno H., Sakita-Ishikawa M., Morikawa Y. et al. A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nat Immunol 2003;4:457–63.

72. Mitsui К., Tokuzawa Y., Itoh H. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;13:631–42.

73. Chambers I., Colby D., Robertson M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;13:643–55.

74. Cavaleri F., Scholer H.R. Nanog: A new recruit to the embryonic stem cell orchestra. Cell 2003;13:551–7.

75. Raz R., Lee C.K., Cannizzaro L.A. et al. Essential role of Stat3 for embryonic stem cell pluripotency. Proc Nati Acad Sci USA 1999;96:2846–51.

76. Kiger A.A., Jones D.L., Schulz C. et al. Stem cell self-renewal specified by Jak-Stat activation in response to a support cell cue. Science 2001;294:2542–5.

77. Guo Y., Chan R., Ramsey H. et al. The homeoprotein Hex is required for heman-gioblast differentiation. Blood 2003;102:2428–35.

78. Welte T., Zhang S.S.M., Wang T. et al. Stat3 deletion during hematopoiesis causes Crohn‘s disease-like pathogenesis and lethality: A critical role of Stat3 in innate immunity. Proc Nati Acad Sci USA 2003;100:1879–84.

79. Gotoh A., Takahira H., Mantel C. et al. Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines. Blood 1996;88:138–45.

80. Mack D.L., Leibowitz D.S., Cooper S. et al. Down-regulation of the myeloid homeobox protein Hex is essential for normal T-cell development. Immunology 2002;107:444–51.

81. Zhang S., Fukuda S., Lee Y.H. et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5B for Flt3-dependent signaling. J Exp Med 2000;192:719–28.

82. Kim C.H., Hangoc G., Cooper S. et al. Altered responsiveness to chemokines due to targeted disruption of SHIP. J Clin Invest 1999;104:1751–9.

83. Helgason C.D., Antonchuk J., Bodner С., Humphries R.K. Homeostastis and regeneration of the hematopoietic stem cell pool are altered in SHIP-deficient mice. Blood 2003;102:3541–7.

84. Carver-Moore K., Broxmeyer H.E., Luoh S.M. et al. Low levels of erythroid and myeloid progenitors in TPO and c-mpl-deficient mice. Blood 1996:88:803–8.

85. Perlingeiro R.C.R., Kyba M., Bodie S. et al. A role for thrombopoietin in hemangioblast development. Stem Cells 2003;21:272–80.

86. Lewis I.D., Almeida-Porada G., Du J. et al. Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood 2001;97:3441–9.

87. Broxmeyer H.E., Bruns H., Zhang S. et al. Th1 cells regulate hematopoietic progenitor cell homeostasis by production of oncostatin M. Immunity 2002; 16:815–25.

88. Blumberg H., Conklin D., Xu W. et al. Interleukin 20: Discovery, receptor identification, and role in epidermal function. Cell 2001;104:9–19.

89. Rich B.E., Kupper T.S. Cytokines: IL-20 — a new effector in skin inflammation. Curr Biol 2001;11(13):531–4.

90. Liu L., Zeng W., Ding C. et al. Selective enhancement of multipotential hematopoietic progenitors in vitro and in vivo by IL-20. Blood 2003:102:3206–9.

91. Dumoutier L., Leemans C., Lejeune D. et al. Cutting edge: Stat activation by I L-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 2001;167:3545–9.

92. Zhao S., Zoller K., Masuko M. et al. Jak2, complemented by a second signal from c-kit or flt3, triggers extensive self-renewal of primary multipotential hematopoietic cells. EMBO J 2002;21:2159–67.

93. Bums С.Е., Zon L.I. Portrait of a stem cell. Dev Cell 2002;3:612–3.

94. Momson S.J., Shah N.M., Anderson D.J. Regulatory mechanisms in stem cell biology. Cell 1997;88:287–98.

95. Jan Y.N., Jan L.Y. Asymmetric cell division. Nature 1998,392:775–9.

96. Brummendorf T.H., Dragowska W., Zijimans J.M. et al. Asymmetric cell divisions sustain long-term hematopoiesis from singlesorted human fetal liver cells. J Exp Med 1998;188:1117–24.

97. Hartwell L., Weinert T. Checkpoints: Controls that control the order of cell cycle events. Science 1989;246:629–34.

98. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol 1994;6:872–6.

99. Mantel C., Luo Z., Canfleld J. et al. Involvement of p21cip-1 and p27kip-1 in the molecular mechanisms of steel factor induced proliferative synergy in vitro and of p21cip-1 in the maintenance of stem/progenitor cells in vivo. Blood 1996;88:3710–9.

100. Braun S.E., Mantel C., Rosenthal M. et al. A positive effect of p21cip-1/waf-1 in the colony formation from murine myeloid progenitor cells as assessed by retroviralmediated gene transfer. Blood Cells Mol Dis 1998;24:138–48.

101. Mantel C., Braun S.E., Reid S. et al. p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 1999;93:1390–8.

102. Mantel C., Hendrie P., Broxmeyer H.E. Steel factor regulates cell cycle asymmetry. Stem Cells 2001;19:483–91.

103. Broxmeyer H.E., Kohli L., Kirn C.H. et al. Stromal cell derived factor-1/CXCL 12 enhances survival/anti-apoptosis of hematopoietic stem and myeloid progenitor cells: Direct effects mediated through CXCR4 and Gai proteins. J Leuk Biol 2003;73:630–8.

104. Lee Y., Gotoh A., Kwon H.J. et al. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 2002;99:4307–17.

105. Mulloy J.C., Cammenga J., Berguido F.J. et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003;102:4369–76.

106. Kobylka P., Ivanyi P., Breur-Vriesendorf B. Preservation of immunological and colony-forming capacities of long-term (15 years) cryopreserved cord blood cells. Transplantation 1998;65:1275–8.

107. Mugishima H., Harada K., Chin M. et al. Effects of long-term cryopreservation on hematopoietic progenitor cells in umbilical cord blood. Bone Marrow Transplant 1999;23:395–6.

108. Me dcalf D. The molesular control of cell division, differentiation, commitment and maturation in hematopoietic cells. Nature 1989;399:27–30.

109. Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993;81:2844–53.

110. Varnum-Finney В., Pulton M.E., Yu M. et al. The Notch ligand, Jagged 1, influences the development of primitive hematopoietic precursors cells, Blood 1998;91:4084.

111. Dull Т., ZuJerey R., Kelly M., Mandel R.J., Nguyen M., Trono D. and Naldini L. A third-generation lentivirus vector ith a conditional packaging system. J Virol 1998;72:8463–71.

112. Marino M.P., Luce M.J., Reiser J. Smallto large-scale production оf lentivirus vectors. Methods in Molecular Biology, vol.229: Lentivirus Gene Engineering Protocols. Edited by M. Federico, Hu mana Press Inc., Totowa, NJ 2002:43–50.

113. Sutton R.E. Production of Lentiviral ector Supernatants and Trasduction of Cellular Targets. Methods in Molecular Biology, vol.229: Lentivirus Gene Engineering Protocols. Edited by M. Federico, Humana Press Inc., Totowa, NJ 2002:147–58.

114. Sutton R.E., Henry Т., Wu M., Rigg R., Bohnlein E. and Brown P.O. Human Immunodeficiency Virus Type 1 Vectors Efficiently Transduce Human Hematopoietic Stem Cells. Journal of Virology 1998;72(7):5781–8.

115. Antonia Follenzi and Luigi Naldini Generation of HIV-1 derived lentiviral vectors. 2002 Academic press:454–6.

116. Finer M.H., Dull T.J., Quin L., Farson D. and Roberts M.R. Kat: a high efficiency retroviral transduction system for primary human T lymphocytes. Blood 1994;83:43–50.

117. Hawley R.G., Covarrubias L., Hawley T. and Mintz B. Handicapped retroviral vectors efficiently transduce foreign genes into hematopoietic stem cells. Proc Natl Acad. Sci USA 1987;84:2406–10.

118. Zufferey R., Dull T., Mandel R.J., Bukovsky A. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. Journal of virology 1998;72(12):9873–80.

119. Yee K., Moores C., Jolly D.J., Wolff J.A., Respress J.G. and Friedmann T. Gene expression from transcriptionally disabled retroviral vectors. Proc Natl Acad Sci USA 1987;84:5197–5201.

120. Yu S.F., von Ruden T., Kantoff P.W., Graber C., Sciberg M., Ruther U., Anderson W. F. and Gilboa E.. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986;83:3194–8.

121. Zufferey R., Nagy D., Mandel R.J., Naldini L. and Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biolcchnol 1997;15:871–5.

122. Ingham P.W. Hedgehog signaling: a tale of two lipids. Science 2001;294:1879–81.

123. Hwang J.J., Li L., Anderson W.F. A conditional self-inactivating retrovirus vector that uses a tetracycline-responsive expression system. J Virol 1997;71:7128–31.

124. Cullen В.R., Lomedico P.Т. and Ju G. Transcriptional interference in avian retroviruses — implications for the promoter insertion model of leukaemogenesis. Nature 1984;307:241–5.

125. Dougherty J.P., Temin H.M. A promoterless retroviral vector indicates that there are sequences in U3 required for 3’ RNA processing. Proc Natl Acad Sci USA 1987;84:1197–201.

126. Kafri Т., Вlomer U., Peterson D.A., Gage F.H., Verma M. Sustained expression of genes delivered directly into liver and muscle by lenti viral vectors. Nat Genet 1997;17:314–7.

127. Olson P., Temin H.M., Dornburg R. Unusually high frequency of reconstitution of long terminal repeats in U3-minus retrovirus vectors by DNA recombination or gene conversion. J Virol 1992;66:1336–43.

128. Michael N.L., D’Arcy L., Ehrenberg P.K. and Redfield R.K. Naturally occuring genotypes of human immunodeficiency virus type 1 long terminal repeat display a wide range of basal and Tat-induced activities. J Virol 1994;68:3163–74.

129. Olson P., Nelson S., Dornburg R. Improved self-inactivating retroviral vector derived from spleen necrosis virus. J Virol 1994;68:7060–6.

130. Zufferey R., Nagy D., Mandel R.J., Naldini L. and Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biolcchnol 1997;15:871–5.

131. Arias A.M. New alleles of Notch draw a blueprint for multifunctionality. Trends in Genet 2002;18:168–70.

132. Baonza A., Freeman M. Notch signalling and the initiation of neural development in the Drosophila eye. Development 2001;128:3889–98.

133. Barolo S., Stone Т., Bang A.G., Posakony J.W. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 2002;15:1964–76.

134. Klein Т., Seugnet L., Haenlin M., Arias A.M. Two different activities of Suppressor of Hairless during wing development in Drosophila. Development 2000;127:3553–66.

135. Artavanis-Tsakonas S., Matsuno K., Fortiny M.E. Notch signalling II. Science 1995;268:225–32.

136. Diederich R.J., Matsuno K., Hing H., Artavanis-Tsakonas S. Cytosolic interection between deltex and Notch ankyrin repeats implicates deltex in the signalling pathway. Development 1994;120:473–81.

137. Satoru Kojika, James D. Griffin. Notch eceptors and hematopoiesis. Experimental Hematology 2001;29(Issue 9):1041–52.

138. Wu L., Aster J., Griffin J.D. Notch receptor signal transduction. Experimental Hematology 2000;28(Issue 7), Supplement 1:92.

139. Singh N., Phillips R.A., Iscove N.N. and Egan S.E. Expression of notch receptors, notch ligands, and fringe genes in hematopoiesis Experimental Hematology 2000;28(Issue 5):527–34.

140. Lawrence N., Klein Т., Brennan K., Arias A.M. Structural requirements for Notch signalling with Delta and Serrate during the development and patterning of the wing disc of Drosophila. Development 2000;127:3185–95.

141. Struhl G., Greenwald I. Presenilin mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc Natl Acad Sci USA 2001;98:229–34.

142. Cadigan K.M., Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997;11:3286–305.

143. Doherty D., Feger G., Younger- Shepherd S., Jan L.Y., Jan Y.N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev 1996;10:421–34.

144. Ипатов С.Е., Румянцев С.А.,Sutton R.E., Румянцев А.Г. Создание генных векторов на базе вируса иммунодефицита человека типа I для работы со стволовыми гемопоэтическими клетками человека. Вопр гематол/онкол и иммунопатол в пед 2005;4(2):92–7.

145. Ипатов С.Е., Румянцев С.А., Sutton R.E., Румянцев А.Г. Способность Cd133+Cd34- и CD133-Cd34+ клеток пуповинной крови человека обеспечивать донорский гемопоэз у NOD/SCID мышей. Вопр гематол/онкол и иммунопатол в пед 2005;4(2):97–102.


Рецензия

Для цитирования:


Румянцев С.А., Осипова Е.Ю., Ипатов С.Е., Шаманская Т.В., Майорова О.А., Румянцев А.Г. Биологические свойства гемопоэтических стволовых клеток пуповинной крови. Онкогематология. 2011;6(1):64-75. https://doi.org/10.17650/1818-8346-2011-6-1-64-75

For citation:


Rumiantsev S.A., Osipova E.Yu., Ipatov S.E., Shamanskaya T.V., Mayorova O.A., Rumyantsev A.G. Biological properties of cord blood hematopoietic stem cells. Oncohematology. 2011;6(1):64-75. (In Russ.) https://doi.org/10.17650/1818-8346-2011-6-1-64-75

Просмотров: 11445


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)