Modern possibilities for diagnosing and tumor clone monitoring, determined by multicolor flow cytometry, in Waldenstrom’s macroglobulinemia
https://doi.org/10.17650/1818-8346-2025-20-2-104-114
Abstract
Waldenstrom’s macroglobulinemia (WM) is a subtype of lymphoplasmacytic lymphoma that combines lymphoplasmacytic lymphoma substrate in the bone marrow and monoclonal immunoglobulin M secretion in the blood. WM diagnosis is a complex process, which is due to both the heterogeneity of tumor populations and similarity to other B-cell lymphomas. The WM tumor cell clone has unique immunophenotypic characteristics and is represented by two aberrant populations from one tumor clone: clonal B-lymphocytes and plasma cells. Detection and characterization of these two aberrant populations seems possible only using multicolor flow cytometry. Bone marrow cell immunophenotyping by flow cytometry establishes the tumor cell immunophenotype, which plays a key role in the differential diagnosis of WM from other types of small cell lymphomas, as well as when other methods are uninformative.
To assess the depth of therapy response, instrumental and laboratory methods are used, including positron emission tomography combined with computed tomography to monitor the size and spread of the tumor mass, immunochemical testing to measure the monoclonal immunoglobulin M secretion, molecular bone marrow research for the presence of MYD88 gene mutations, as well as bone marrow cell immunophenotyping by multicolor flow cytometry. Currently, it is especially important to study the dynamics of minimal residual disease in WM using the capabilities of multicolor flow cytometry.
About the Authors
A. B. LoginovaRussian Federation
Anastasia Borisovna Loginova
4 Novyy Zykovskiy Proezd, Moscow 125167
I. V. Galtseva
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167
A. E. Grachev
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167
K. A. Nikiforova
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167
N. M. Kapranov
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167
Yu. A. Tsoy
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167
E. E. Zvonkov
Russian Federation
4 Novyy Zykovskiy Proezd, Moscow 125167
References
1. World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. 5th edn. Eds.: S.H. Swerdlow, E. Campo, N.L. Harris et al. Lyon: IARC, 2022. 585 p.
2. Clinical guidelines of the Russian Federation 2024 (Russia). Waldenstrom’s macroglobulinemia (C88.0). (In Russ.).
3. Waldenström J. Incipient myelomatosis or “essential” hyperglobulinemia with fibrinogenopenia – a new syndrome? Acta Med Scand 1944;117(3-4):216–47. DOI: 10.1111/j.0954-6820.1944.tb03955.x
4. McMaster M.L. The epidemiology of Waldenström macroglobulinemia. Semin Hematol 2023;60(2):65–72. DOI: 10.1053/j.seminhematol.2023.03.008
5. Castillo J.J., Olszewski A.J., Cronin A.M. et al. Survival trends in Waldenström macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood 2014;123(25):3999– 4000. DOI: 10.1182/blood-2014-05-574871
6. Owen R.G., Treon S.P., Al-Katib A. et al. Clinicopathological definition of Waldenström’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30(2): 110–5. DOI: 10.1053/sonc.2003.50082
7. Kumar S.K., Callander N.S., Adekola K. et al. Waldenström macroglobulinemia/lymphoplasmacytic lymphoma, version 2.2024. NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2024;22(1D):e240001. DOI: 10.6004/jnccn.2024.0001
8. Kapoor P., Paludo J., Ansell S.M. Waldenstrom macroglobulinemia: familial predisposition and the role of genomics in prognosis and treatment selection. Curr Treat Options Oncol 2016;17(3):16. DOI: 10.1007/s11864-016-0391-7
9. Treon S.P., Xu L., Yang G. et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012;367(9):826–33. DOI: 10.1056/NEJMoa1200710
10. Dimopoulos M.A., Kastritis E., Owen R.G. et al. Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood 2014;124(9):1404–11. DOI: 10.1182/blood-2014-03-565135
11. Gertz M.A. Waldenström macroglobulinemia: 2021 update on diagnosis, risk stratification, and management. Am J Hematol 2021;96(2):258–69. DOI: 10.1002/ajh.26082
12. Grachev A.E., Zvonkov E.E. Protocol for diagnosis and intensive treatment of Waldenstrom’s macroglobulinemia patients. In: Diagnostic algorithms and treatment protocols for blood system diseases. Ed.: E.N. Parovichnikova. 2024. Pp. 174–175. (In Russ.).
13. Castillo J.J., Olszewski A.J., Kanan S. et al. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: an analysis of the Surveillance, Epidemiology and End Results database. Br J Haematol 2018;180(2):195–205. DOI: 10.1111/bjh.15021
14. Tedeschi A., Benevolo G., Varettoni M. et al. Fludarabine plus cyclophosphamide and rituximab in Waldenström macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer 2012;118(2): 434–43. DOI: 10.1002/cncr.26303
15. Kapoor P., Ansell S.M., Fonseca R. et al. Diagnosis and management of Waldenström macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines 2016. JAMA Oncol 2017;3(9):1257–65. DOI: 10.1001/jamaoncol.2016.5763
16. Palladini G., Milani P., Merlini G. Management of AL amyloidosis in 2020. Blood 2020;136(23):2620–7. DOI: 10.1182/blood.2020006913
17. Fintelmann F., Forghani R., Schaefer P.W. et al. Bing–Neel syndrome revisited. Clin Lymphoma Myeloma 2009;9(1):104–6. DOI: 10.3816/CLM.2009.n.028
18. Kastritis E., Morel P., Duhamel A. et al. A revised international prognostic score system for Waldenström’s macroglobulinemia. Leukemia 2019;33(11):2654–61. DOI: 10.1038/s41375-019-0431-y
19. Sahota S.S., Forconi F., Ottensmeier C.H. et al. Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002;100(4):1505–7. DOI: 10.1182/blood.V100.4.1505.h81602001505_1505_1507
20. Yu X., Li W., Deng Q. et al. MYD88 L265P mutation in lymphoid malignancies. Cancer Res 2018;78(10):2457–62. DOI: 10.1158/0008-5472.CAN-18-0215
21. Gascue A., Merino J., Paiva B. Flow cytometry. Hematol Oncol Clin North Am 2018;32(5):765–75. DOI: 10.1016/j.hoc.2018.05.004
22. Treon S.P., Tripsas C.K., Meid K. et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med 2015;372(15):1430–40. DOI: 10.1056/NEJMoa1501548
23. Varettoni M., Zibellini S., Defrancesco I. et al. Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica 2017;102(12):2077–85. DOI: 10.3324/haematol.2017.172718
24. Zanwar S., Le-Rademacher J., Durot E. et al. Simplified risk stratification model for patients with Waldenström macroglobulinemia. J Clin Oncol 2024;42(21):2527–36. DOI: 10.1200/JCO.23.02066
25. Varettoni M., Arcaini L., Zibellini S. et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013;121(13):2522–8. DOI: 10.1182/blood-2012-09-457101
26. Tam C.S., Opat S., D’Sa S. et al. Biomarker analysis of the ASPEN study comparing zanubrutinib with ibrutinib for patients with Waldenström macroglobulinemia. Blood Adv 2024;8(7):1639–50. DOI: 10.1182/bloodadvances.2023010906
27. Arcaini L., Varettoni M., Boveri E. et al. Distinctive clinical and histological features of Waldenstrom’s macroglobulinemia and splenic marginal zone lymphoma. Clin Lymphoma Myeloma Leuk 2011;11(1):103–5. DOI: 10.3816/CLML.2011.n.020
28. Kapoor P., Paludo J., Vallumsetla N., Greipp P.R. Waldenström macroglobulinemia: what a hematologist needs to know. Blood Rev 2015;29(5):301–19. DOI: 10.1016/j.blre.2015.03.001
29. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Waldenström macroglobulinemia/lymphoplasmacytic lymphoma. Version 1.2025.
30. Paiva B., Montes M.C., García-Sanz R. et al. Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM- MGUS and Waldenström’s macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia 2014;28(1):166–73. DOI: 10.1038/leu.2013.124
31. Ocio E.M., Hernández J.M., Mateo G. et al. Immunophenotypic and cytogenetic comparison of Waldenstrom’s macroglobulinemia with splenic marginal zone lymphoma. Clin Lymphoma 2005;5(4):241–5. DOI: 10.3816/clm.2005.n.007
32. Thieblemont C., Felman P., Callet-Bauchu E. et al. Splenic marginal-zone lymphoma: a distinct clinical and pathological entity. Lancet Oncol 2003;4(2):95–103. DOI: 10.1016/S1470-2045(03)00981-1
33. Morice W.G., Chen D., Kurtin P.J. et al. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenström’s macroglobulinemia. Mod Pathol 2009;22(6):807–16. DOI: 10.1038/modpathol.2009.37
34. Ferrante M., Drandi D., Zibellini S. et al. Prospective evaluation of minimal residual disease in Waldenström macroglobulinemia across different tissues and treatments: results of the “BIO-WM” trial of the Fondazione Italiana Linfomi (FIL). Blood 2023;142(Suppl 1):1621. DOI: 10.1182/blood-2023-181731
35. Gustine J., Meid K., Xu L. et al. To select or not to select? The role of B-cell selection in determining the MYD88 mutation status in Waldenström macroglobulinaemia. Br J Haematol 2017;176(5):822–4. DOI: 10.1111/bjh.13996
36. Barakat F.H., Medeiros L.J., Wei E.X. et al. Residual monotypic plasma cells in patients with Waldenström macroglobulinemia after therapy. Am J Clin Pathol 2011;135(3):365–73. DOI: 10.1309/AJCP15YFULCZHZVH
37. Alcoceba M., García-Álvarez M., Medina A. et al. MYD88 mutations: transforming the landscape of IgM monoclonal gammopathies. Int J Mol Sci 2022;23(10):5570. DOI: 10.3390/ijms23105570
38. Galtseva I.V., Davydova Yu.O., Parovichnikova E.N. Detection of measurable residual disease in adults with acute leukaemia. Gematologiya i transfuziologiya = Russian Journal of Hematology and Transfusiology 2020;65(4):460–72. (In Russ.). DOI: 10.35754/0234-5730-2020-65-4-460-472
39. Schuurhuis G.J., Heuser M., Freeman S. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018;131(12):1275–91. DOI: 10.1182/blood-2017-09-801498
40. Galtseva I.V., Davydova Yu.O., Kapranov N.M. et al. Technical aspects of minimal residual disease detection by multicolor flow cytometry in acute myeloid leukemia patients. Klinicheskaya onkogematologiya = Clinical Oncohematology 2021;14(4):503–12. (In Russ.). DOI: 10.21320/2500-2139-2021-14-4-503-512
41. Galtseva I.V., Davydova Yu.O., Parovichnikova E.N. et al. Minimal residual disease and b-cell subpopulation monitoring in acute b-lymphoblastic leukaemia patients treated on RALL-2016 protocol. Gematologiya i transfuziologiya = Russian Journal of Hematology and Transfusiology 2021;66(2):192–205. (In Russ.). DOI: 10.35754/0234-5730-2021-66-2-192-205
42. Björklund E., Mazur J., Söderhäll S., Porwit-MacDonald A. Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia 2003;17(1):138–48. DOI: 10.1038/sj.leu.2402736
43. Kumar S., Paiva B., Anderson K.C. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17(8):e328–46. DOI: 10.1016/S1470-2045(16)30206-6
44. Galtseva I.V., Tsoi Yu.A., Grachev A.E. et al. Multicolor flow cytometry in the diagnosis of Waldenstrom macroglobulinemia. Onkogematologiya = Oncohematology 2025;20(1):128–38. (In Russ.). DOI: 10.17650/1818-8346-2025-20-1-128-138
45. De Tute R., Rawstron A., D’Sa S. et al. Minimal residual disease (MRD) in Waldenström macroglobulinaemia (WM): impact on survival outcomes with rituximab-based therapies. Clin Lymphoma Myeloma Leuk 2019;19(10):e310–1. DOI: 10.1016/j.clml.2019.09.510
46. García-Sanz R., Ocio E.M., Caballero A. et al. Post-treatment bone marrow residual disease >5 % by flow cytometry is highly predictive of short progression-free and overall survival in patients with Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011;11(1):168–71. DOI: 10.3816/CLML.2011.n.040
47. Xiong W., Wang Z., Wang T. et al. Minimal residual disease status improved the response evaluation in patients with Waldenström’s macroglobulinemia. Front Immunol 2023;14:1171539. DOI: 10.3389/fimmu.2023.1171539
48. Treon S.P., Ioakimidis L., Soumerai J.D. et al. Primary therapy of Waldenström macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol 2009;27(23):3830–5. DOI: 10.1200/JCO.2008.20.4677
49. Paulus A., Manna A., Akhtar S. et al. Targeting CD38 with daratumumab is lethal to Waldenström macroglobulinaemia cells. Br J Haematol 2018;183(2):196–211. DOI: 10.1111/bjh.15515
50. Palomba M.L., Qualls D., Monette S. et al. CD19-directed chimeric antigen receptor T cell therapy in Waldenström macroglobulinemia: a preclinical model and initial clinical experience. J Immunother Cancer 2022;10(2):e004128. DOI: 10.1136/jitc-2021-004128
Review
For citations:
Loginova A.B., Galtseva I.V., Grachev A.E., Nikiforova K.A., Kapranov N.M., Tsoy Yu.A., Zvonkov E.E. Modern possibilities for diagnosing and tumor clone monitoring, determined by multicolor flow cytometry, in Waldenstrom’s macroglobulinemia. Oncohematology. 2025;20(2):104-114. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-2-104-114