Preview

Oncohematology

Advanced search

The significance of miR-142 in tumor progression of diffuse large B-cell lymphoma

https://doi.org/10.17650/1818-8346-2025-20-2-87-103

Abstract

In recent years, microRNAs have attracted the attention of researchers as potential markers for diagnosis, classification, prognosis of tumor progression and sensitivity to treatment, as well as their use as targets for therapy. The purpose of the review is to summarize data on the miR-142 role in the tumor progression of one of the most common lymphoproliferative diseases – diffuse large B-cell lymphoma.
MicroRNA miR-142 has a broad spectrum of tumor-suppressor functions by targeting a number of important protooncogenes, the loss of control over which contributes to enhanced proliferation, blocking apoptosis, activating B-lymphocyte survival signaling pathways, metabolic reprogramming, creating an immunosuppressive microenvironment and tumor evasion of immune surveillance, as well as dissemination of malignant cells.
Information on the nomenclature and mechanisms of miR-142 formation, the participation of miR-142 in hematopoiesis are provided, the pathogenetic role and relationship between the miR-142 expression profile and diffuse large B-cell lymphoma are analyzed, and miR-142 molecular genetic abnormalities in this disease are discussed.

About the Authors

E. N. Voropaeva
Novosibirsk State Medical University ; The Institute of Internal and Preventive Medicine – branch of the Federal Research Center, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences
Russian Federation

52 Krasny Prospekt, Novosibirsk 630091 

175/1 B. Bogatkova St., Novosibirsk 630089 



O. B. Seregina
Novosibirsk State Medical University
Russian Federation

2 Krasny Prospekt, Novosibirsk 630091



M. S. Voytko
Novosibirsk State Medical University
Russian Federation

2 Krasny Prospekt, Novosibirsk 630091



T. N. Babaeva
Novosibirsk State Medical University
Russian Federation

2 Krasny Prospekt, Novosibirsk 630091



N. V. Skvortsova
Novosibirsk State Medical University
Russian Federation

2 Krasny Prospekt, Novosibirsk 630091



V. N. Maksimov
Novosibirsk State Medical University ; The Institute of Internal and Preventive Medicine – branch of the Federal Research Center, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences
Russian Federation

2 Krasny Prospekt, Novosibirsk 630091

175/1 B. Bogatkova St., Novosibirsk 630089 



T. I. Pospelova
Novosibirsk State Medical University
Russian Federation

52 Krasny Prospekt, Novosibirsk 630091



References

1. Cheng M., Zhu Y., Yu H. et al. Non-coding RNA notations, regulations and interactive resources. Funct Integr Genomics 2024;24(6):217. DOI: 10.1007/s10142-024-01494-w

2. Di Bella S., La Ferlita A., Carapezza G. et al. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data. Brief Bioinform 2020;21(6):1987–98. DOI: 10.1093/bib/bbz110

3. Marguerat S., Bähler J. RNA-seq: from technology to biology. Cell Mol Life Sci 2010;67(4):569–79. DOI: 10.1007/s00018-009-0180-6

4. Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019;234(5):5451–65. DOI: 10.1002/jcp.27486

5. Acunzo M., Romano G., Wernicke D., Croce C.M. MicroRNA and cancer – a brief overview [published correction appears in Adv Biol Regul 2015;58:53]. Adv Biol Regul 2015;57:1–9. DOI: 10.1016/j.jbior.2014.09.013

6. Menegatti J., Nakel J., Stepanov Y.K. et al. Changes of protein expression after CRISPR/Cas9 knockout of miRNA-142 in cell lines derived from diffuse large B-cell lymphoma. Cancers (Basel) 2022;14(20):5031. DOI: 10.3390/cancers14205031

7. Anastasiadou E., Jacob L.S., Slack F.J. Non-coding RNA networks in cancer. Nat Rev Cancer 2018;18(1):5–18. DOI: 10.1038/nrc.2017.99

8. Tan Y.F., Chen Z.Y., Wang L. et al. MiR-142-3p functions as an oncogene in prostate cancer by targeting FOXO1. J Cancer 2020;11(6):1614–24. DOI: 10.7150/jca.41888

9. Yang L., Wang Z.F., Wu H., Wang W. miR-142-5p improves neural differentiation and proliferation of adipose-derived stem cells. Cell Physiol Biochem 2018;50(6):2097–107. DOI: 10.1159/000495054

10. Bandrés E., Cubedo E., Agirre X. et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006;5:29. DOI: 10.1186/1476-4598-5-29

11. Fu Y., Sun L.Q., Huang Y. et al. miR-142-3p inhibits the metastasis of hepatocellular carcinoma cells by regulating HMGB1 gene expression. Curr Mol Med 2018;18(3):135–41. DOI: 10.2174/1566524018666180907161124

12. Mansoori B., Mohammadi A., Ghasabi M. et al. miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol 2019;234(6):9816–25. DOI: 10.1002/jcp.27670

13. Wang Z., Liu Z., Fang X., Yang H. MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell lung cancer. Cell Physiol Biochem 2017;43(6):2505–15. DOI: 10.1159/000484459

14. Zhang X., Yan Z., Zhang J. et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol 2011;22(10):2257–66. DOI: 10.1093/annonc/mdq758

15. Kawano S., Araki K., Bai J. et al. A gain-of-function mutation in microRNA 142 is sufficient to cause the development of T-cell leukemia in mice. Cancer Sci 2023;114(7):2821–34. DOI: 10.1111/cas.15794

16. Mildner A., Chapnik E., Varol D. et al. MicroRNA-142 controls thymocyte proliferation. Eur J Immunol 2017;47(7):1142–52. DOI: 10.1002/eji.201746987

17. Hezaveh K., Kloetgen A., Bernhart S.H. et al. Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis. Haematologica 2016;101(11):1380–9. DOI: 10.3324/haematol.2016.143891

18. Morin R.D., Assouline S., Alcaide M. et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin Cancer Res 2016;22(9):2290–300. DOI: 10.1158/1078-0432.CCR-15-2123

19. Soltani S., Zakeri A., Tabibzadeh A. et al. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol Biol Rep 2021;48(2):1801–17. DOI: 10.1007/s11033-021-06152-z

20. PLOS ONE editors. Expression of concern: overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS One 2023;18(1):e0278797. DOI: 10.1371/journal.pone.0278797

21. Dahlhaus M., Roolf C., Ruck S. et al. Expression and prognostic significance of hsa-miR-142-3p in acute leukemias. Neoplasma 2013;60(4):432–8. DOI: 10.4149/neo_2013_056

22. Bellon M., Lepelletier Y., Hermine O., Nicot C. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 2009;113(20):4914–7. DOI: 10.1182/blood-2008-11-189845

23. Lv M., Zhang X., Jia H. et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 2012;26(4):769–77. DOI: 10.1038/leu.2011.273

24. Huang W., Paul D., Calin G.A., Bayraktar R. miR-142: a master regulator in hematological malignancies and therapeutic opportunities. Cells 2023;13(1):84. DOI: 10.3390/cells13010084

25. Pahlavan Y., Mohammadi Nasr M., Dalir Abdolahinia E. et al. Prominent roles of microRNA-142 in cancer. Pathol Res Pract 2020;216(11):153220. DOI: 10.1016/j.prp.2020.153220

26. Schwarzenbach H., Nishida N., Calin G.A., Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014;11(3):145–56. DOI: 10.1038/nrclinonc.2014.5

27. Anandagoda N., Willis J.C., Hertweck A. et al. microRNA-142- mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest 2019;129(3):1257–71. DOI: 10.1172/JCI124725

28. Shrestha A., Mukhametshina R.T., Taghizadeh S. et al. MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn 2017;246(4):285–90. DOI: 10.1002/dvdy.24477

29. Nimmo R., Ciau-Uitz A., Ruiz-Herguido C. et al. MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Dev Cell 2013;26(3):237–49. DOI: 10.1016/j.devcel.2013.06.023

30. GeneCaRNA. The human ncRNA GENE DATABASE. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=MIR142&keywords=mir-142

31. Landgraf P., Rusu M., Sheridan R. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129(7):1401–14. DOI: 10.1016/j.cell.2007.04.040

32. Liu R., Zheng S., Yu K. et al. Prognostic value of miR-142 in solid tumors: a meta-analysis. Biosci Rep 2021;41(2):BSR20204043. DOI: 10.1042/BSR20204043

33. Rivkin N., Chapnik E., Mildner A. et al. Erythrocyte survival is controlled by microRNA-142. Haematologica 2017;102(4):676–85. DOI: 10.3324/haematol.2016.156109

34. Ding S., Liang Y., Zhao M. et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012;64(9):2953–63. DOI: 10.1002/art.34505

35. Talebi F., Ghorbani S., Chan W.F. et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation 2017;14(1):55. DOI: 10.1186/s12974-017-0832-7

36. Kramer N.J., Wang W.L., Reyes E.Y. et al. Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood 2015;125(24):3720–30. DOI: 10.1182/blood-2014-10-603951

37. Xu S., Guo K., Zeng Q. et al. The RNase III enzyme dicer is essential for germinal center B-cell formation. Blood 2012;119(3):767–76. DOI: 10.1182/blood-2011-05-355412

38. Skoufos G., Kakoulidis P., Tastsoglou S. et al. TarBase-v9.0 extends experimentally supported miRNA-gene interactions to cell-types and virally encoded miRNAs. Nucleic Acids Res 2024;52(D1):D304–10. DOI: 10.1093/nar/gkad1071

39. Klümper T., Bruckmueller H., Diewock T. et al. Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance. Exp Hematol Oncol 2020;9:26. DOI: 10.1186/s40164-020-00183-1

40. Zareifar P., Ahmed H.M., Ghaderi P. et al. miR-142-3p/5p role in cancer: from epigenetic regulation to immunomodulation. Cell Biochem Funct 2024;42(2):e3931. DOI: 10.1002/cbf.3931

41. Hashmi A.A., Iftikhar S.N., Nargus G. et al. Double-expressor phenotype (BCL-2/c-MYC co-expression) of diffuse large B-cell lymphoma and its clinicopathological correlation. Cureus 2021;13(2):e13155. DOI: 10.7759/cureus.13155

42. Babicheva L.G., Poddubnaya I.V. Heterogeneous diffuse large B-cell lymphoma: accurate diagnosis as a key to successful therapy. A review. Sovremennaya onkologiya = Journal of Modern Oncology 2023;25(2):168–77. (In Russ.). DOI: 10.26442/18151434.2023.2.202237

43. Bisso A., Sabò A., Amati B. MYC in germinal center-derived lymphomas: mechanisms and therapeutic opportunities. Immunol Rev 2019;288(1):178–97. DOI: 10.1111/imr.12734

44. Shen R., Fu D., Dong L. et al. Simplified algorithm for genetic subtyping in diffuse large B-cell lymphoma. Signal Transduct Target Ther 2023;8(1):145. DOI: 10.1038/s41392-023-01358-y

45. Wenzel S.S., Grau M., Mavis C. et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia 2013;27(6):1381–90. DOI: 10.1038/leu.2012.367

46. Uddin S., Hussain A.R., Siraj A.K. et al. Role of phosphatidylinositol 3’-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 2006;108(13):4178–86. DOI: 10.1182/blood-2006-04-016907

47. Wang L., Qin W., Huo Y.J. et al. Advances in targeted therapy for malignant lymphoma. Sig Transduct Target Ther 2020;5(1):15. DOI: 10.1038/s41392-020-0113-2

48. Batlevi C.L., Morschhauser F. Novel targeted agents for follicular lymphoma. Ann Lymphoma 2021;5:3. DOI: 10.21037/aol-20-45

49. Zhou N., Choi J., Grothusen G. et al. DLBCL-associated NOTCH2 mutations escape ubiquitin-dependent degradation and promote chemoresistance. Blood 2023;142(11):973–88. DOI: 10.1182/blood.2022018752

50. Ren J., Li W., Pan G. et al. miR-142-3p modulates cell invasion and migration via PKM2-mediated aerobic glycolysis in colorectal cancer. Anal Cell Pathol (Amst) 2021;2021:9927720. DOI: 10.1155/2021/9927720

51. Zhang Y., Zhai Z., Duan J. et al. Lactate: the mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne) 2022;13:901495. DOI: 10.3389/fendo.2022.901495

52. Jabara H.H., Ohsumi T., Chou J. et al. A homozygous mucosa- associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol 2013;132(1):151–8. DOI: 10.1016/j.jaci.2013.04.047

53. Guldenpfennig C., Teixeiro E., Daniels M. NF-κB’s contribution to B cell fate decisions. Front Immunol 2023;14:1214095. DOI: 10.3389/fimmu.2023.1214095

54. Gehring T., Seeholzer T., Krappmann D. BCL10 – bridging CARDs to immune activation. Front Immunol 2018;9:1539. DOI: 10.3389/fimmu.2018.01539

55. Li T., Li X., Zamani A. et al. c-Rel is a myeloid checkpoint for cancer immunotherapy. Nat Cancer 2020;1(5):507–17. DOI: 10.1038/s43018-020-0061-3

56. Fruman D.A., Chiu H., Hopkins B.D. et al. The PI3K pathway in human disease. Cell 2017;170(4):605–35. DOI: 10.1016/j.cell.2017.07.029

57. De la Cruz López K.G., Toledo Guzmán M.E., Sánchez E.O., García Carrancá A. mTORC1 as a regulator of mitochondrial functions and a therapeutic target in cancer. Front Oncol 2019;9:1373. DOI: 10.3389/fonc.2019.01373

58. Shurygina I.A., Shurygin M.G. Mitogen-activated protein kinases as a target for regulating of the connective tissue growth. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological Physiology and Experimental Therapy 2018;63(4):151–7. (In Russ.). DOI: 10.25557/0031-2991.2019.04.151-157

59. Kiu H., Nicholson S.E. Biology and significance of the JAK/STAT signalling pathways. Growth Factors 2012;30(2):88–106. DOI: 10.3109/08977194.2012.660936

60. Lewis K.L., Trotman J. Integration of PET in DLBCL. Semin Hematol 2023;60(5):291–304. DOI: 10.1053/j.seminhematol.2023.12.003

61. Halford S.E.R., Walter H., McKay P. et al. Phase I expansion study of the first-in-class monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). J Clin Oncol 2021;39(15 suppl). DOI: 10.1200/JCO.2021.39.15_suppl.3115

62. Bhalla K., Jaber S., Nahid M.N. et al. Role of hypoxia in diffuse large B-cell lymphoma: metabolic repression and selective translation of HK2 facilitates development of DLBCL. Sci Rep 2018;8(1):744. DOI: 10.1038/s41598-018-19182-8

63. Shi X., Wu C., Deng W., Wu J. Prognostic value of lactate dehydrogenase to absolute lymphocyte count ratio and albumin to fibrinogen ratio in diffuse large B-cell lymphoma. Medicine (Baltimore) 2024;103(30):e39097. DOI: 10.1097/MD.0000000000039097

64. Garcia-Lacarte M., Grijalba S.C., Melchor J. et al. The PD-1/PD-L1 checkpoint in normal germinal centers and diffuse large B-cell lymphomas. Cancers (Basel) 2021;13(18):4683. DOI: 10.3390/cancers13184683

65. Wang L., Cao C., Qiu J. et al. Correlation between PD-1 and sPD-L1 expression levels in peripheral blood of DLBCL patients and their clinicopathological characteristics. Cell Mol Biol (Noisy-le-grand) 2024;70(2):44–50. DOI: 10.14715/cmb/2024.70.2.7

66. Zhang T., Liu H., Jiao L. et al. Genetic characteristics involving the PD-1/PD-L1/L2 and CD73/A2aR axes and the immunosuppressive microenvironment in DLBCL. J Immunother Cancer 2022;10(4):e004114. DOI: 10.1136/jitc-2021-004114

67. Wei Y., Zhou K., Wang C. et al. Exosomal miR-142-3p from M1-polarized macrophages suppresses cell growth and immune escape in glioblastoma through regulating HMGB1-mediated PD-1/PD-L1 checkpoint. J Neurochem 2025;169(1):e16224. DOI: 10.1111/jnc.16224

68. Amornsupak K., Thongchot S., Thinyakul C. et al. HMGB1 mediates invasion and PD-L1 expression through RAGE-PI3K/ AKT signaling pathway in MDA-MB-231 breast cancer cells. BMC Cancer 2022;22(1):578. DOI: 10.1186/s12885-022-09675-1

69. Chen F., Zhao D., Xu Y. et al. miR-142 deficit in T cells during blast crisis promotes chronic myeloid leukemia immune escape. Nat Commun 2025;16(1):1253. DOI: 10.1038/s41467-025-56383-y

70. Ling J., Sun Q., Tian Q. et al. Human papillomavirus 16 E6/E7 contributes to immune escape and progression of cervical cancer by regulating miR-142-5p/PD-L1 axis. Arch Biochem Biophys 2022;731:109449. DOI: 10.1016/j.abb.2022.109449

71. Zhou C., Zhang Y., Yan R. et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ 2021;28(2):715–29. DOI: 10.1038/s41418-020-00618-6

72. Motsch N., Alles J., Imig J. et al. MicroRNA profiling of Epstein– Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One 2012;7(8):e42193. DOI: 10.1371/journal.pone.0042193

73. Berrien-Elliott M.M., Sun Y., Neal C. et al. MicroRNA-142 is critical for the homeostasis and function of type 1 innate lymphoid cells. Immunity 2019;51(3):479–90.e6. DOI: 10.1016/j.immuni.2019.06.016

74. Wu X., Li T., Jiang R. et al. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023;22(1):194. DOI: 10.1186/s12943-023-01899-4

75. Damania B., Kenney S.C., Raab-Traub N. Epstein–Barr virus: biology and clinical disease. Cell 2022;185(20):3652–70. DOI: 10.1016/j.cell.2022.08.026

76. Bednarska K., Chowdhury R., Tobin J.W.D. et al. Epstein–Barr virus-associated lymphomas decoded. Br J Haematol 2024;204(2):415–33. DOI: 10.1111/bjh.19255

77. Fitzsimmons L., Cartlidge R., Chang C. et al. BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020;27(5):1554–68. DOI: 10.1038/s41418-019-0435-1

78. Okuno Y., Murata T., Sato Y. et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat Microbiol 2019;4(3):404–13. DOI: 10.1038/s41564-019-0387-8

79. Chen Y., Kincaid R.P., Bastin K. et al. MicroRNA-focused CRISPR/Cas9 screen identifies miR-142 as a key regulator of Epstein–Barr virus reactivation. PLoS Pathog 2024;20(6):e1011970. DOI: 10.1371/journal.ppat.1011970

80. Ambrosio M.R., Navari M., Di Lisio L. et al. The Epstein Barr- encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 2014;9:12. DOI: 10.1186/1750-9378-9-12

81. Urbanek-Trzeciak M.O., Galka-Marciniak P., Nawrocka P.M. et al. Pan-cancer analysis of somatic mutations in miRNA genes. EBioMedicine 2020;61:103051. DOI: 10.1016/j.ebiom.2020.103051

82. Kansakar U., Gambardella J., Varzideh F. et al. miR-142 targets TIM-1 in human endothelial cells: potential implications for stroke, COVID-19, Zika, Ebola, dengue, and other viral infections. Int J Mol Sci 2022;23(18):10242. DOI: 10.3390/ijms231810242

83. Angiari S., Donnarumma T., Rossi B. et al. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity 2014;40(4):542–53. DOI: 10.1016/j.immuni.2014.03.004

84. Yuan S., Liu K.J., Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ 2020;6(3):152–62. DOI: 10.4103/bc.bc_29_20

85. Chen Z., Li G. Immune response and blood-brain barrier dysfunction during viral neuroinvasion. Innate Immun 2021;27(2):109–17. DOI: 10.1177/1753425920954281

86. Lenze D., Leoncini L., Hummel M. et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 2011;25(12):1869–76. DOI: 10.1038/leu.2011.156

87. Ayoubian H., Ludwig N., Fehlmann T. et al. Epstein–Barr virus infection of cell lines derived from diffuse large B-cell lymphomas alters microRNA loading of the Ago2 complex. J Virol 2019;93(3):e01297–18. DOI: 10.1128/JVI.01297-18

88. Bahashwan S., Alsaadi M., Barefah A. et al. Profiling of microRNAs by next-generation sequencing: potential biomarkers for diffuse large B-cell lymphoma. J Taibah Univ Med Sci 2024;19(3):619–27. DOI: 10.1016/j.jtumed.2024.04.010

89. Lawrie C.H., Chi J., Taylor S. et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med 2009;13(7):1248–60. DOI: 10.1111/j.1582-4934.2008.00628.x

90. Voropaeva E.N., Orlov Y.L., Loginova A.B. et al. Deregulation mechanisms and therapeutic opportunities of p53-responsive microRNAs in diffuse large B-cell lymphoma. PeerJ 2025;13:e18661. DOI: 10.7717/peerj.18661

91. Galka-Marciniak P., Urbanek-Trzeciak M.O., Nawrocka P.M., Kozlowski P. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. Nucleic Acids Res 2021;49(2):601–20. DOI: 10.1093/nar/gkaa1223

92. Machowska M., Galka-Marciniak P., Kozlowski P. Consequences of genetic variants in miRNA genes. Comput Struct Biotechnol J 2022;20:6443–57. DOI: 10.1016/j.csbj.2022.11.036

93. Kwanhian W., Lenze D., Alles J. et al. MicroRNA-142 is mutated in about 20 % of diffuse large B-cell lymphoma. Cancer Med 2012;1(2):141–55. DOI: 10.1002/cam4.29

94. Hornshøj H., Nielsen M.M., Sinnott-Armstrong N.A. et al. Pan-cancer screen for mutations in non-coding elements with conservation and cancer specificity reveals correlations with expression and survival. NPJ Genom Med 2018;3:1. DOI: 10.1038/s41525-017-0040-5

95. Bouska A., Zhang W., Gong Q. et al. Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 2017;31(1):83–91. DOI: 10.1038/leu.2016.175

96. Rheinbay E., Nielsen M.M., Abascal F. et al. Analyses of non- coding somatic drivers in 2,658 cancer whole genomes. Nature 2020;578(7793):102–11. DOI: 10.1038/s41586-020-1965-x

97. Puente X.S., Beà S., Valdés-Mas R. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526(7574):519–24. DOI: 10.1038/nature14666

98. Cancer Genome Atlas Research Network; Ley T.J., Miller C., Ding L. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368(22):2059–74. DOI: 10.1056/NEJMoa1301689

99. Thol F., Scherr M., Kirchner A. et al. Clinical and functional implications of microRNA mutations in a cohort of 935 patients with myelodysplastic syndromes and acute myeloid leukemia. Haematologica 2015;100(4):e122–4. DOI: 10.3324/haematol.2014.120345

100. Marshall A., Kasturiarachchi J., Datta P. et al. Mir142 loss unlocks IDH2R140-dependent leukemogenesis through antagonistic regulation of HOX genes [published correction appears in Sci Rep 2021;11(1):6974]. Sci Rep 2020;10(1):19390. DOI: 10.1038/s41598-020-76218-8

101. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019;47(D1):D155–62. DOI: 10.1093/nar/gky1141

102. Chen Y., Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020;48(D1):D127–31. DOI: 10.1093/nar/gkz757

103. Trissal M.C., Wong T.N., Yao J.C. et al. MIR142 loss-of-function mutations derepress ASH1L to increase HOXA gene expression and promote leukemogenesis. Cancer Res 2018;78(13):3510–21. DOI: 10.1158/0008-5472.CAN-17-3592

104. Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias [published correction appears in Cell 2003;115(4):505]. Cell 2003;115(2):209–16. DOI: 10.1016/s0092-8674(03)00801-8

105. Cheng Z., Liu G., Huang C., Zhao X. Upregulation of circRNA_100395 sponges miR-142-3p to inhibit gastric cancer progression by targeting the PI3K/AKT axis. Oncol Lett 2021;21(5):419. DOI: 10.3892/ol.2021.12680

106. Yin Z., Shen H., Gu C.M. et al. MiRNA-142-3P and FUS can be sponged by long noncoding RNA DUBR to promote cell proliferation in acute myeloid leukemia. Front Mol Biosci 2021;8:754936. DOI: 10.3389/fmolb.2021.754936

107. Gauwerky C.E., Huebner K., Isobe M. et al. Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci USA 1989;86(22):8867–71. DOI: 10.1073/pnas.86.22.8867

108. Robbiani D.F., Bunting S., Feldhahn N. et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 2009;36(4):631–41. DOI: 10.1016/j.molcel.2009.11.007

109. Kuriyama K., Enomoto Y., Suzuki R. et al. Enforced expression of MIR142, a target of chromosome translocation in human B-cell tumors, results in B-cell depletion. Int J Hematol 2018;107(3):345–54. DOI: 10.1007/s12185-017-2360-8

110. Mitelman database of chromosome aberrations and gene fusions in cancer. Eds.: F. Mitelman, B. Johansson, F. Mertens. 2025. Available at: https://mitelmandatabase.isb-cgc.org

111. Andreopoulos B., Anastassiou D. Integrated analysis reveals hsa-miR-142 as a representative of a lymphocyte-specific gene expression and methylation signature. Cancer Inform 2012;11:61–75. DOI: 10.4137/CIN.S9037

112. Zhao H., Zhang L.E., Guo S. et al. Overexpression of DNA methyltransferase 1 as a negative independent prognostic factor in primary gastrointestinal diffuse large B-cell lymphoma treated with CHOP-like regimen and rituximab. Oncol Lett 2015;9(5):2307–12. DOI: 10.3892/ol.2015.3038

113. Amara K., Ziadi S., Hachana M. et al. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci 2010;101(7):1722–30. DOI: 10.1111/j.1349-7006.2010.01569.x

114. Voropaeva E.N., Pospelova T.I., Orlov Y.L. et al. The methylation of the p53 targets the genes MIR-203, MIR-129-2, MIR-34A and MIR-34B/C in the tumor tissue of diffuse large B-cell lymphoma. Genes (Basel) 2022;13(8):1401. DOI: 10.3390/genes13081401

115. Voropaeva E.N., Pospelova T.I., Berezina O.V. et al. Methylation of p53- responsive oncosuppressive microRNA genes in hemoblastosis. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology 2022;21(2): 130–42. (In Russ.). DOI: 10.21294/1814-4861-2022-21-2-130-142

116. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215–33. DOI: 10.1016/j.cell.2009.01.002

117. Mazan-Mamczarz K., Gartenhaus R.B. Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk Res 2013;37(11):1420–8. DOI: 10.1016/j.leukres.2013.08.020


Review

For citations:


Voropaeva E.N., Seregina O.B., Voytko M.S., Babaeva T.N., Skvortsova N.V., Maksimov V.N., Pospelova T.I. The significance of miR-142 in tumor progression of diffuse large B-cell lymphoma. Oncohematology. 2025;20(2):87-103. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-2-87-103

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)