Preview

Онкогематология

Расширенный поиск

Значение miR-142 в опухолевой прогрессии диффузной В-клеточной крупноклеточной лимфомы

https://doi.org/10.17650/1818-8346-2025-20-2-87-103

Аннотация

В последние годы микроРНК привлекли внимание исследователей в области онкогематологии как потенциальные маркеры для диагностики, классификации, прогнозирования особенностей течения и чувствительности к лечению опухолей, а также их использования в качестве мишеней для таргетной терапии.
Цель обзора – обобщение данных о роли miR-142 в опухолевой прогрессии одного из самых частых лимфопролиферативных заболеваний – диффузной В-клеточной крупноклеточной лимфомы.
МикроРНК miR-142 обладает широким спектром опухоль-супрессорных функций за счет нацеливания на ряд важнейших протоонкогенов, утрата контроля над которыми способствует усилению пролиферации, блоку апоптоза, активации сигнальных путей выживания В-лимфоцитов, метаболическому перепрограммированию, созданию иммуносупрессивной микросреды и избеганию опухолью иммунного надзора, а также диссеминации злокачественных клеток.
Приведена информация о номенклатуре и механизмах образования miR-142, участии miR-142 в гемопоэзе, проанализированы патогенетическая роль miR-142 и взаимосвязь между профилем экспрессии miR-142 и диффузной В-клеточной крупноклеточной лимфомой, а также обсуждаются молекулярно-генетические нарушения miR-142 при данном заболевании.

Об авторах

Е. Н. Воропаева
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России ; НИИ терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики СО РАН»
Россия

Елена Николаевна Воропаева

630091 Новосибирск, Красный пр-кт, 52

630089 Новосибирск, ул. Б. Богаткова, 175/1 



О. Б. Серегина
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

630091 Новосибирск, Красный пр-кт, 52



М. С. Войтко
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

630091 Новосибирск, Красный пр-кт, 52



Т. Н. Бабаева
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

630091 Новосибирск, Красный пр-кт, 52



Н. В. Скворцова
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

630091 Новосибирск, Красный пр-кт, 52



В. Н. Максимов
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России ; НИИ терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики СО РАН»
Россия

630091 Новосибирск, Красный пр-кт, 52

630089 Новосибирск, ул. Б. Богаткова, 175/1 



Т. И. Поспелова
ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

630091 Новосибирск, Красный пр-кт, 52



Список литературы

1. Cheng M., Zhu Y., Yu H. et al. Non-coding RNA notations, regulations and interactive resources. Funct Integr Genomics 2024;24(6):217. DOI: 10.1007/s10142-024-01494-w

2. Di Bella S., La Ferlita A., Carapezza G. et al. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data. Brief Bioinform 2020;21(6):1987–98. DOI: 10.1093/bib/bbz110

3. Marguerat S., Bähler J. RNA-seq: from technology to biology. Cell Mol Life Sci 2010;67(4):569–79. DOI: 10.1007/s00018-009-0180-6

4. Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019;234(5):5451–65. DOI: 10.1002/jcp.27486

5. Acunzo M., Romano G., Wernicke D., Croce C.M. MicroRNA and cancer – a brief overview [published correction appears in Adv Biol Regul 2015;58:53]. Adv Biol Regul 2015;57:1–9. DOI: 10.1016/j.jbior.2014.09.013

6. Menegatti J., Nakel J., Stepanov Y.K. et al. Changes of protein expression after CRISPR/Cas9 knockout of miRNA-142 in cell lines derived from diffuse large B-cell lymphoma. Cancers (Basel) 2022;14(20):5031. DOI: 10.3390/cancers14205031

7. Anastasiadou E., Jacob L.S., Slack F.J. Non-coding RNA networks in cancer. Nat Rev Cancer 2018;18(1):5–18. DOI: 10.1038/nrc.2017.99

8. Tan Y.F., Chen Z.Y., Wang L. et al. MiR-142-3p functions as an oncogene in prostate cancer by targeting FOXO1. J Cancer 2020;11(6):1614–24. DOI: 10.7150/jca.41888

9. Yang L., Wang Z.F., Wu H., Wang W. miR-142-5p improves neural differentiation and proliferation of adipose-derived stem cells. Cell Physiol Biochem 2018;50(6):2097–107. DOI: 10.1159/000495054

10. Bandrés E., Cubedo E., Agirre X. et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006;5:29. DOI: 10.1186/1476-4598-5-29

11. Fu Y., Sun L.Q., Huang Y. et al. miR-142-3p inhibits the metastasis of hepatocellular carcinoma cells by regulating HMGB1 gene expression. Curr Mol Med 2018;18(3):135–41. DOI: 10.2174/1566524018666180907161124

12. Mansoori B., Mohammadi A., Ghasabi M. et al. miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol 2019;234(6):9816–25. DOI: 10.1002/jcp.27670

13. Wang Z., Liu Z., Fang X., Yang H. MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell lung cancer. Cell Physiol Biochem 2017;43(6):2505–15. DOI: 10.1159/000484459

14. Zhang X., Yan Z., Zhang J. et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol 2011;22(10):2257–66. DOI: 10.1093/annonc/mdq758

15. Kawano S., Araki K., Bai J. et al. A gain-of-function mutation in microRNA 142 is sufficient to cause the development of T-cell leukemia in mice. Cancer Sci 2023;114(7):2821–34. DOI: 10.1111/cas.15794

16. Mildner A., Chapnik E., Varol D. et al. MicroRNA-142 controls thymocyte proliferation. Eur J Immunol 2017;47(7):1142–52. DOI: 10.1002/eji.201746987

17. Hezaveh K., Kloetgen A., Bernhart S.H. et al. Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis. Haematologica 2016;101(11):1380–9. DOI: 10.3324/haematol.2016.143891

18. Morin R.D., Assouline S., Alcaide M. et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin Cancer Res 2016;22(9):2290–300. DOI: 10.1158/1078-0432.CCR-15-2123

19. Soltani S., Zakeri A., Tabibzadeh A. et al. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol Biol Rep 2021;48(2):1801–17. DOI: 10.1007/s11033-021-06152-z

20. PLOS ONE editors. Expression of concern: overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS One 2023;18(1):e0278797. DOI: 10.1371/journal.pone.0278797

21. Dahlhaus M., Roolf C., Ruck S. et al. Expression and prognostic significance of hsa-miR-142-3p in acute leukemias. Neoplasma 2013;60(4):432–8. DOI: 10.4149/neo_2013_056

22. Bellon M., Lepelletier Y., Hermine O., Nicot C. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 2009;113(20):4914–7. DOI: 10.1182/blood-2008-11-189845

23. Lv M., Zhang X., Jia H. et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 2012;26(4):769–77. DOI: 10.1038/leu.2011.273

24. Huang W., Paul D., Calin G.A., Bayraktar R. miR-142: a master regulator in hematological malignancies and therapeutic opportunities. Cells 2023;13(1):84. DOI: 10.3390/cells13010084

25. Pahlavan Y., Mohammadi Nasr M., Dalir Abdolahinia E. et al. Prominent roles of microRNA-142 in cancer. Pathol Res Pract 2020;216(11):153220. DOI: 10.1016/j.prp.2020.153220

26. Schwarzenbach H., Nishida N., Calin G.A., Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014;11(3):145–56. DOI: 10.1038/nrclinonc.2014.5

27. Anandagoda N., Willis J.C., Hertweck A. et al. microRNA-142- mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest 2019;129(3):1257–71. DOI: 10.1172/JCI124725

28. Shrestha A., Mukhametshina R.T., Taghizadeh S. et al. MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn 2017;246(4):285–90. DOI: 10.1002/dvdy.24477

29. Nimmo R., Ciau-Uitz A., Ruiz-Herguido C. et al. MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Dev Cell 2013;26(3):237–49. DOI: 10.1016/j.devcel.2013.06.023

30. GeneCaRNA. The human ncRNA GENE DATABASE. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=MIR142&keywords=mir-142

31. Landgraf P., Rusu M., Sheridan R. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129(7):1401–14. DOI: 10.1016/j.cell.2007.04.040

32. Liu R., Zheng S., Yu K. et al. Prognostic value of miR-142 in solid tumors: a meta-analysis. Biosci Rep 2021;41(2):BSR20204043. DOI: 10.1042/BSR20204043

33. Rivkin N., Chapnik E., Mildner A. et al. Erythrocyte survival is controlled by microRNA-142. Haematologica 2017;102(4):676–85. DOI: 10.3324/haematol.2016.156109

34. Ding S., Liang Y., Zhao M. et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 2012;64(9):2953–63. DOI: 10.1002/art.34505

35. Talebi F., Ghorbani S., Chan W.F. et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation 2017;14(1):55. DOI: 10.1186/s12974-017-0832-7

36. Kramer N.J., Wang W.L., Reyes E.Y. et al. Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood 2015;125(24):3720–30. DOI: 10.1182/blood-2014-10-603951

37. Xu S., Guo K., Zeng Q. et al. The RNase III enzyme dicer is essential for germinal center B-cell formation. Blood 2012;119(3):767–76. DOI: 10.1182/blood-2011-05-355412

38. Skoufos G., Kakoulidis P., Tastsoglou S. et al. TarBase-v9.0 extends experimentally supported miRNA-gene interactions to cell-types and virally encoded miRNAs. Nucleic Acids Res 2024;52(D1):D304–10. DOI: 10.1093/nar/gkad1071

39. Klümper T., Bruckmueller H., Diewock T. et al. Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance. Exp Hematol Oncol 2020;9:26. DOI: 10.1186/s40164-020-00183-1

40. Zareifar P., Ahmed H.M., Ghaderi P. et al. miR-142-3p/5p role in cancer: from epigenetic regulation to immunomodulation. Cell Biochem Funct 2024;42(2):e3931. DOI: 10.1002/cbf.3931

41. Hashmi A.A., Iftikhar S.N., Nargus G. et al. Double-expressor phenotype (BCL-2/c-MYC co-expression) of diffuse large B-cell lymphoma and its clinicopathological correlation. Cureus 2021;13(2):e13155. DOI: 10.7759/cureus.13155

42. Бабичева Л.Г., Поддубная И.В. Гетерогенная диффузная В-клеточная крупноклеточная лимфома: правильный диагноз как залог успешной терапии. Современная онкология 2023;25(2):168–77. DOI: 10.26442/18151434.2023.2.202237

43. Bisso A., Sabò A., Amati B. MYC in germinal center-derived lymphomas: mechanisms and therapeutic opportunities. Immunol Rev 2019;288(1):178–97. DOI: 10.1111/imr.12734

44. Shen R., Fu D., Dong L. et al. Simplified algorithm for genetic subtyping in diffuse large B-cell lymphoma. Signal Transduct Target Ther 2023;8(1):145. DOI: 10.1038/s41392-023-01358-y

45. Wenzel S.S., Grau M., Mavis C. et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia 2013;27(6):1381–90. DOI: 10.1038/leu.2012.367

46. Uddin S., Hussain A.R., Siraj A.K. et al. Role of phosphatidylinositol 3’-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 2006;108(13):4178–86. DOI: 10.1182/blood-2006-04-016907

47. Wang L., Qin W., Huo Y.J. et al. Advances in targeted therapy for malignant lymphoma. Sig Transduct Target Ther 2020;5(1):15. DOI: 10.1038/s41392-020-0113-2

48. Batlevi C.L., Morschhauser F. Novel targeted agents for follicular lymphoma. Ann Lymphoma 2021;5:3. DOI: 10.21037/aol-20-45

49. Zhou N., Choi J., Grothusen G. et al. DLBCL-associated NOTCH2 mutations escape ubiquitin-dependent degradation and promote chemoresistance. Blood 2023;142(11):973–88. DOI: 10.1182/blood.2022018752

50. Ren J., Li W., Pan G. et al. miR-142-3p modulates cell invasion and migration via PKM2-mediated aerobic glycolysis in colorectal cancer. Anal Cell Pathol (Amst) 2021;2021:9927720. DOI: 10.1155/2021/9927720

51. Zhang Y., Zhai Z., Duan J. et al. Lactate: the mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne) 2022;13:901495. DOI: 10.3389/fendo.2022.901495

52. Jabara H.H., Ohsumi T., Chou J. et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol 2013;132(1):151–8. DOI: 10.1016/j.jaci.2013.04.047

53. Guldenpfennig C., Teixeiro E., Daniels M. NF-κB’s contribution to B cell fate decisions. Front Immunol 2023;14:1214095. DOI: 10.3389/fimmu.2023.1214095

54. Gehring T., Seeholzer T., Krappmann D. BCL10 – bridging CARDs to immune activation. Front Immunol 2018;9:1539. DOI: 10.3389/fimmu.2018.01539

55. Li T., Li X., Zamani A. et al. c-Rel is a myeloid checkpoint for cancer immunotherapy. Nat Cancer 2020;1(5):507–17. DOI: 10.1038/s43018-020-0061-3

56. Fruman D.A., Chiu H., Hopkins B.D. et al. The PI3K pathway in human disease. Cell 2017;170(4):605–35. DOI: 10.1016/j.cell.2017.07.029

57. De la Cruz López K.G., Toledo Guzmán M.E., Sánchez E.O., García Carrancá A. mTORC1 as a regulator of mitochondrial functions and a therapeutic target in cancer. Front Oncol 2019;9:1373. DOI: 10.3389/fonc.2019.01373

58. Шурыгина И.А., Шурыгин М.Г. Митогенактивируемые протеинкиназы как мишень для регуляции роста соединительной ткани. Патологическая физиология и экспериментальная терапия 2018;63(4):151–7. DOI: 10.25557/0031-2991.2019.04.151-157

59. Kiu H., Nicholson S.E. Biology and significance of the JAK/STAT signalling pathways. Growth Factors 2012;30(2):88–106. DOI: 10.3109/08977194.2012.660936

60. Lewis K.L., Trotman J. Integration of PET in DLBCL. Semin Hematol 2023;60(5):291–304. DOI: 10.1053/j.seminhematol.2023.12.003

61. Halford S.E.R., Walter H., McKay P. et al. Phase I expansion study of the first-in-class monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). J Clin Oncol 2021;39(15 suppl). DOI: 10.1200/JCO.2021.39.15_suppl.3115

62. Bhalla K., Jaber S., Nahid M.N. et al. Role of hypoxia in diffuse large B-cell lymphoma: metabolic repression and selective translation of HK2 facilitates development of DLBCL. Sci Rep 2018;8(1):744. DOI: 10.1038/s41598-018-19182-8

63. Shi X., Wu C., Deng W., Wu J. Prognostic value of lactate dehydrogenase to absolute lymphocyte count ratio and albumin to fibrinogen ratio in diffuse large B-cell lymphoma. Medicine (Baltimore) 2024;103(30):e39097. DOI: 10.1097/MD.0000000000039097

64. Garcia-Lacarte M., Grijalba S.C., Melchor J. et al. The PD-1/PD-L1 checkpoint in normal germinal centers and diffuse large B-cell lymphomas. Cancers (Basel) 2021;13(18):4683. DOI: 10.3390/cancers13184683

65. Wang L., Cao C., Qiu J. et al. Correlation between PD-1 and sPD-L1 expression levels in peripheral blood of DLBCL patients and their clinicopathological characteristics. Cell Mol Biol (Noisy-le-grand) 2024;70(2):44–50. DOI: 10.14715/cmb/2024.70.2.7

66. Zhang T., Liu H., Jiao L. et al. Genetic characteristics involving the PD-1/PD-L1/L2 and CD73/A2aR axes and the immunosuppressive microenvironment in DLBCL. J Immunother Cancer 2022;10(4):e004114. DOI: 10.1136/jitc-2021-004114

67. Wei Y., Zhou K., Wang C. et al. Exosomal miR-142-3p from M1-polarized macrophages suppresses cell growth and immune escape in glioblastoma through regulating HMGB1-mediated PD-1/PD-L1 checkpoint. J Neurochem 2025;169(1):e16224. DOI: 10.1111/jnc.16224

68. Amornsupak K., Thongchot S., Thinyakul C. et al. HMGB1 mediates invasion and PD-L1 expression through RAGE-PI3K/ AKT signaling pathway in MDA-MB-231 breast cancer cells. BMC Cancer 2022;22(1):578. DOI: 10.1186/s12885-022-09675-1

69. Chen F., Zhao D., Xu Y. et al. miR-142 deficit in T cells during blast crisis promotes chronic myeloid leukemia immune escape. Nat Commun 2025;16(1):1253. DOI: 10.1038/s41467-025-56383-y

70. Ling J., Sun Q., Tian Q. et al. Human papillomavirus 16 E6/E7 contributes to immune escape and progression of cervical cancer by regulating miR-142-5p/PD-L1 axis. Arch Biochem Biophys 2022;731:109449. DOI: 10.1016/j.abb.2022.109449

71. Zhou C., Zhang Y., Yan R. et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ 2021;28(2):715–29. DOI: 10.1038/s41418-020-00618-6

72. Motsch N., Alles J., Imig J. et al. MicroRNA profiling of Epstein– Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One 2012;7(8):e42193. DOI: 10.1371/journal.pone.0042193

73. Berrien-Elliott M.M., Sun Y., Neal C. et al. MicroRNA-142 is critical for the homeostasis and function of type 1 innate lymphoid cells. Immunity 2019;51(3):479–90.e6. DOI: 10.1016/j.immuni.2019.06.016

74. Wu X., Li T., Jiang R. et al. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023;22(1):194. DOI: 10.1186/s12943-023-01899-4

75. Damania B., Kenney S.C., Raab-Traub N. Epstein–Barr virus: biology and clinical disease. Cell 2022;185(20):3652–70. DOI: 10.1016/j.cell.2022.08.026

76. Bednarska K., Chowdhury R., Tobin J.W.D. et al. Epstein–Barr virus-associated lymphomas decoded. Br J Haematol 2024;204(2):415–33. DOI: 10.1111/bjh.19255

77. Fitzsimmons L., Cartlidge R., Chang C. et al. BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020;27(5):1554–68. DOI: 10.1038/s41418-019-0435-1

78. Okuno Y., Murata T., Sato Y. et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat Microbiol 2019;4(3):404–13. DOI: 10.1038/s41564-019-0387-8

79. Chen Y., Kincaid R.P., Bastin K. et al. MicroRNA-focused CRISPR/Cas9 screen identifies miR-142 as a key regulator of Epstein–Barr virus reactivation. PLoS Pathog 2024;20(6):e1011970. DOI: 10.1371/journal.ppat.1011970

80. Ambrosio M.R., Navari M., Di Lisio L. et al. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 2014;9:12. DOI: 10.1186/1750-9378-9-12

81. Urbanek-Trzeciak M.O., Galka-Marciniak P., Nawrocka P.M. et al. Pan-cancer analysis of somatic mutations in miRNA genes. EBioMedicine 2020;61:103051. DOI: 10.1016/j.ebiom.2020.103051

82. Kansakar U., Gambardella J., Varzideh F. et al. miR-142 targets TIM-1 in human endothelial cells: potential implications for stroke, COVID-19, Zika, Ebola, dengue, and other viral infections. Int J Mol Sci 2022;23(18):10242. DOI: 10.3390/ijms231810242

83. Angiari S., Donnarumma T., Rossi B. et al. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity 2014;40(4):542–53. DOI: 10.1016/j.immuni.2014.03.004

84. Yuan S., Liu K.J., Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ 2020;6(3):152–62. DOI: 10.4103/bc.bc_29_20

85. Chen Z., Li G. Immune response and blood-brain barrier dysfunction during viral neuroinvasion. Innate Immun 2021;27(2):109–17. DOI: 10.1177/1753425920954281

86. Lenze D., Leoncini L., Hummel M. et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 2011;25(12):1869–76. DOI: 10.1038/leu.2011.156

87. Ayoubian H., Ludwig N., Fehlmann T. et al. Epstein–Barr virus infection of cell lines derived from diffuse large B-cell lymphomas alters microRNA loading of the Ago2 complex. J Virol 2019;93(3):e01297–18. DOI: 10.1128/JVI.01297-18

88. Bahashwan S., Alsaadi M., Barefah A. et al. Profiling of microRNAs by next-generation sequencing: potential biomarkers for diffuse large B-cell lymphoma. J Taibah Univ Med Sci 2024;19(3):619–27. DOI: 10.1016/j.jtumed.2024.04.010

89. Lawrie C.H., Chi J., Taylor S. et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med 2009;13(7):1248–60. DOI: 10.1111/j.1582-4934.2008.00628.x

90. Voropaeva E.N., Orlov Y.L., Loginova A.B. et al. Deregulation mechanisms and therapeutic opportunities of p53-responsive microRNAs in diffuse large B-cell lymphoma. PeerJ 2025;13:e18661. DOI: 10.7717/peerj.18661

91. Galka-Marciniak P., Urbanek-Trzeciak M.O., Nawrocka P.M., Kozlowski P. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. Nucleic Acids Res 2021;49(2):601–20. DOI: 10.1093/nar/gkaa1223

92. Machowska M., Galka-Marciniak P., Kozlowski P. Consequences of genetic variants in miRNA genes. Comput Struct Biotechnol J 2022;20:6443–57. DOI: 10.1016/j.csbj.2022.11.036

93. Kwanhian W., Lenze D., Alles J. et al. MicroRNA-142 is mutated in about 20 % of diffuse large B-cell lymphoma. Cancer Med 2012;1(2):141–55. DOI: 10.1002/cam4.29

94. Hornshøj H., Nielsen M.M., Sinnott-Armstrong N.A. et al. Pan-cancer screen for mutations in non-coding elements with conservation and cancer specificity reveals correlations with expression and survival. NPJ Genom Med 2018;3:1. DOI: 10.1038/s41525-017-0040-5

95. Bouska A., Zhang W., Gong Q. et al. Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 2017;31(1):83–91. DOI: 10.1038/leu.2016.175

96. Rheinbay E., Nielsen M.M., Abascal F. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 2020;578(7793):102–11. DOI: 10.1038/s41586-020-1965-x

97. Puente X.S., Beà S., Valdés-Mas R. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526(7574):519–24. DOI: 10.1038/nature14666

98. Cancer Genome Atlas Research Network; Ley T.J., Miller C., Ding L. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368(22):2059–74. DOI: 10.1056/NEJMoa1301689

99. Thol F., Scherr M., Kirchner A. et al. Clinical and functional implications of microRNA mutations in a cohort of 935 patients with myelodysplastic syndromes and acute myeloid leukemia. Haematologica 2015;100(4):e122–4. DOI: 10.3324/haematol.2014.120345

100. Marshall A., Kasturiarachchi J., Datta P. et al. Mir142 loss unlocks IDH2R140-dependent leukemogenesis through antagonistic regulation of HOX genes [published correction appears in Sci Rep 2021;11(1):6974]. Sci Rep 2020;10(1):19390. DOI: 10.1038/s41598-020-76218-8

101. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019;47(D1):D155–62. DOI: 10.1093/nar/gky1141

102. Chen Y., Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020;48(D1):D127–31. DOI: 10.1093/nar/gkz757

103. Trissal M.C., Wong T.N., Yao J.C. et al. MIR142 loss-of-function mutations derepress ASH1L to increase HOXA gene expression and promote leukemogenesis. Cancer Res 2018;78(13):3510–21. DOI: 10.1158/0008-5472.CAN-17-3592

104. Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias [published correction appears in Cell 2003;115(4):505]. Cell 2003;115(2):209–16. DOI: 10.1016/s0092-8674(03)00801-8

105. Cheng Z., Liu G., Huang C., Zhao X. Upregulation of circRNA_100395 sponges miR-142-3p to inhibit gastric cancer progression by targeting the PI3K/AKT axis. Oncol Lett 2021;21(5):419. DOI: 10.3892/ol.2021.12680

106. Yin Z., Shen H., Gu C.M. et al. MiRNA-142-3P and FUS can be sponged by long noncoding RNA DUBR to promote cell proliferation in acute myeloid leukemia. Front Mol Biosci 2021;8:754936. DOI: 10.3389/fmolb.2021.754936

107. Gauwerky C.E., Huebner K., Isobe M. et al. Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci USA 1989;86(22):8867–71. DOI: 10.1073/pnas.86.22.8867

108. Robbiani D.F., Bunting S., Feldhahn N. et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 2009;36(4):631–41. DOI: 10.1016/j.molcel.2009.11.007

109. Kuriyama K., Enomoto Y., Suzuki R. et al. Enforced expression of MIR142, a target of chromosome translocation in human B-cell tumors, results in B-cell depletion. Int J Hematol 2018;107(3):345–54. DOI: 10.1007/s12185-017-2360-8

110. Mitelman database of chromosome aberrations and gene fusions in cancer. Eds.: F. Mitelman, B. Johansson, F. Mertens. 2025. Available at: https://mitelmandatabase.isb-cgc.org

111. Andreopoulos B., Anastassiou D. Integrated analysis reveals hsa-miR-142 as a representative of a lymphocyte-specific gene expression and methylation signature. Cancer Inform 2012;11:61–75. DOI: 10.4137/CIN.S9037

112. Zhao H., Zhang L.E., Guo S. et al. Overexpression of DNA methyltransferase 1 as a negative independent prognostic factor in primary gastrointestinal diffuse large B-cell lymphoma treated with CHOP-like regimen and rituximab. Oncol Lett 2015;9(5):2307–12. DOI: 10.3892/ol.2015.3038

113. Amara K., Ziadi S., Hachana M. et al. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci 2010;101(7):1722–30. DOI: 10.1111/j.1349-7006.2010.01569.x

114. Voropaeva E.N., Pospelova T.I., Orlov Y.L. et al. The methylation of the p53 targets the genes MIR-203, MIR-129-2, MIR-34A and MIR-34B/C in the tumor tissue of diffuse large B-cell lymphoma. Genes (Basel) 2022;13(8):1401. DOI: 10.3390/genes13081401

115. Воропаева Е.Н., Поспелова Т.И., Березина О.В. и др. Метилирование генов р53-респонзивных онкосупрессорных микроРНК при гемобластозах. Сибирский онкологический журнал 2022;21(2):130–42. DOI: 10.21294/1814-4861-2022-21-2-130-142

116. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215–33. DOI: 10.1016/j.cell.2009.01.002

117. Mazan-Mamczarz K., Gartenhaus R.B. Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk Res 2013;37(11):1420–8. DOI: 10.1016/j.leukres.2013.08.020


Рецензия

Для цитирования:


Воропаева Е.Н., Серегина О.Б., Войтко М.С., Бабаева Т.Н., Скворцова Н.В., Максимов В.Н., Поспелова Т.И. Значение miR-142 в опухолевой прогрессии диффузной В-клеточной крупноклеточной лимфомы. Онкогематология. 2025;20(2):87-103. https://doi.org/10.17650/1818-8346-2025-20-2-87-103

For citation:


Voropaeva E.N., Seregina O.B., Voytko M.S., Babaeva T.N., Skvortsova N.V., Maksimov V.N., Pospelova T.I. The significance of miR-142 in tumor progression of diffuse large B-cell lymphoma. Oncohematology. 2025;20(2):87-103. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-2-87-103

Просмотров: 40


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)