Физиологические и патофизиологические аспекты активации тромбоцитов крови через рецептор CLEC-2

А.А. Мартьянов^{1, 2, 3}, В.Н. Канева^{1, 2}, М.А. Пантелеев^{1, 2, 3, 4}, А.Н. Свешникова^{1, 2, 3}

¹ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии имени Дмитрия Рогачева» Минздрава России; Россия, 117997 Москва, ул. Саморы Машела, 1; ²Московский государственный университет имени М.В. Ломоносова, физический факультет; Россия, 119991, Москва, Ленинские горы, 1, стр. 2;

³Центр теоретических проблем физико-химической фармакологии РАН; Россия, 119991 Москва, ул. Косыгина, 4; ⁴Московский физико-технический институт (государственный университет), факультет биологической и медицинской физики; Россия, 141700 Долгопрудный, Институтский переулок, 9

Контакты: Михаил Александрович Пантелеев mapanteleev@yandex.ru

Рецептор семейства лектиноподобных типа С (С-type lectin-like, CLEC) CLEC-2 был обнаружен на тромбоцитах человека около 10 лет назад. Основным эндогенным лигандом CLEC-2 является мембранный белок подопланин, экспрессируемый клетками эндотелия лимфатических сосудов, ретикулярными фибробластами в лимфатических узлах и подоцитами почечной капсулы. Также
подопланин экспонируется на поверхности клеток некоторых опухолей (меланом, глиом). Комплекс CLEC-2—подопланин активно вовлечен в процессы эмбрионального развития (разделение лимфатических и кровеносных сосудов, ангиогенез), поддержания
целостности капилляров при воспалительных процессах и предотвращения смешения крови и лимфы в венулах с высоким эндотелием. Также образование комплекса CLEC-2—подопланин происходит при метастазировании некоторых опухолей, сепсисе
и развитии тромбозов глубоких вен. Перспективными препаратами из числа существующих для лечения связанных с CLEC-2
заболеваний являются ибрутиниб и аспирин. В настоящем обзоре обсуждаются известные физиологические и патологические
возможности CLEC-2 и перспективы таргетной терапии ассоциированных с действием CLEC-2 заболеваний.

Ключевые слова: тромбоцит, молекулярная сигнализация, тирозинкиназы, СLEC-2, метастазирование, тромбоз глубоких вен.

Для цитирования: Мартьянов А.А., Канева В.Н., Пантелеев М.А., Свешникова А.Н. Физиологические и патофизиологические аспекты активации тромбоцитов крови через рецептор CLEC-2. Онкогематология 2018:13(3):83—90

DOI: 10.17650/1818-8346-2018-13-3-83-90

Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor

A.A. Martyanov^{1,2,3}, V.N. Kaneva^{1,2}, M.A. Panteleev^{1,2,3,4}, A.N. Sveshnikova^{1,2,3}

¹Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; 1 Samory Mashela St., Moscow 117198, Russia;

²Lomonosov Moscow State University, Faculty of Physics; 1, bldg. 2 Leninskie Gory, Moscow 119991, Russia; ³Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; 4 Kosygina St., Moscow 119991, Russia;

⁴Moscow Institute of Physics and Technology (State University), Faculty of Biological and Medical Physics; 9 Institutskiy Pereulok, Dolgoprudnyi 141700, Russia

Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. Association of CLEC-2 with podoplanin is involved in processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor metastasis progression, Salmonella sepsis and deep-vein thrombosis. This makes CLEC-2 and podoplanin a perspective target for pharmacological treatment. Aspirin and Ibrutinib are considered to be perspective for abrogation of podoplanin-induced platelet activation via CLEC-2. The present review discusses already known pathological and physiological roles of CLEC-2 and possibilities of a targeted therapy for CLEC-2 associated diseases.

Key words: platelet, molecular signaling, tyrosine-kinases, CLEC-2, metastasis, deep vein thrombosis.

For citation: Martyanov A.A., Kaneva V.N., Panteleev M.A., Sveshnikova A.N. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor. Onkogematologiya = Oncohematology 2018;13(3):83–90

Введение

Тромбоциты — циркулирующие в кровотоке безъядерные дисковидные тельца, отшнуровавшиеся от мегакариоцитов в красном костном мозге, — играют главную роль в первичной остановке кровотечения. Повреждение эндотелия приводит к обнажению компонентов внеклеточного матрикса — ламинина, коллагена, фибронектина. Взаимодействие с ними приводит к активации тромбоцитов. При этом тромбоциты изменяют свою форму, приобретают адгезивные способности и секретируют разнообразные активаторы и цитокины, способствующие активации новых тромбоцитов, приносимых током крови. Они также выделяют вазоконстрикторы и индуцируют процессы воспаления в стенках сосудов [1].

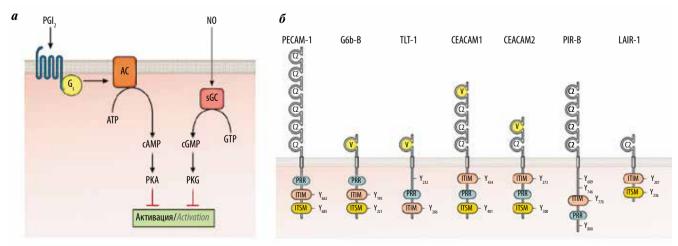
Выполнение тромбоцитами физиологических задач осуществляется благодаря присутствию на их поверхности различных рецепторов. Так, агрегация и адгезия тромбоцитов происходят за счет рецепторов GPIb (рецептор к фактору Виллебранда) [2] и интегринов, основным из которых является рецептор к фибриногену $\alpha_{\text{тив}}\beta_{\pi}$ [3].

Активация тромбоцитов благодаря рецепторам, ассоциированным с G-белками (P_2Y_1 , P_2Y_{12} , PAR 1, PAR 4), или рецепторам, ассоциированным с тирозинкиназами (GP-VI, CLEC-2, Fc γ RIIa), приводит к повышению концентрации свободных ионов кальция в цитозоле тромбоцита. В результате происходит перестройка цитоскелета тромбоцита и экзоцитоз гранул, содержащих медиаторы вторичной активации (в том числе аденозиндифосфат (АДФ)), а также синтез гидрофобных активаторов, в первую очередь тромбоксана A_2 (Тх A_2).

Баланс между недостаточным (кровоточивость) и избыточным (тромбоз) ответом тромбоцита на активацию обусловлен наличием в кровотоке ингибиторов, выделяемых клетками сосудистого эндотелия — простациклином (PGI_2) и оксидом азота (NO). Оба этих соединения способны полностью предотвратить

активацию тромбоцитов даже в ответ на сильные стимулы (рис. 1a) [4]. Другой способ предотвратить активацию тромбоцита — связывание с лигандом одного из рецепторов, содержащих последовательность аминокислот («мотив») ITIM (Immunoreceptor Tyrosine-based Inhibitory Motif, тирозинсодержащий ингибирующий мотив иммунорецепторов) [4—6]. При этом происходит активация внутриклеточного каскада фосфатаз, которые предотвращают активацию участников активационных каскадов (рис. 1δ).

Рецептор СLEС-2 был обнаружен в процессе скрининга генома человека на предмет лектинподобных рецепторов С-типа. Показано, что мРНК, кодирующая СLEС-2, экспрессируется в клетках печени, костного мозга, в моноцитах, дендритных клетках, гранулоцитах и NK-клетках [7, 8]. Механизмы активации тромбоцита через СLEС-2 и роль, которую этот рецептор играет в процессе тромбообразования, сейчас активно изучают.


Цель данного **обзора** — систематизация имеющихся данных литературы о тромбоцитарном рецепторе CLEC-2, его физиологическом и патофизиологическом участии в индукции внутриклеточной сигнализации в тромбоцитах и возможности использовать этот сигнальный каскад в качестве источника новых мишеней для терапии онкологических заболеваний, а также тромбозов глубоких вен.

Роль CLEC-2

Физиологическая

Одной из основных функций взаимодействия выставляемого на поверхности тромбоцитов CLEC-2 с подопланином на клетках эндотелия лимфатических сосудов является разделение кровеносной и лимфатической систем при эмбриональном развитии [9, 10]. Существует 3 гипотезы о механизме разделения:

1) разделение благодаря образованию тромбоцитарного агрегата в месте расхождения (рис. 2a, I);

Рис. 1. Способы предотвращения активации тромбоцитов: a- ингибирование активации тромбоцитов PGI_2 и NO; b- ITIM рецепторы на поверхности тромбоцитов крови человека (воспроизведено из [4])

Fig. 1. Ways to prevent platelet activation: a - PGI2 and NO inhibition of platelets activation; b - ITIM receptors on the surface of human blood platelets (a reproduction from [4])

VOL.

00

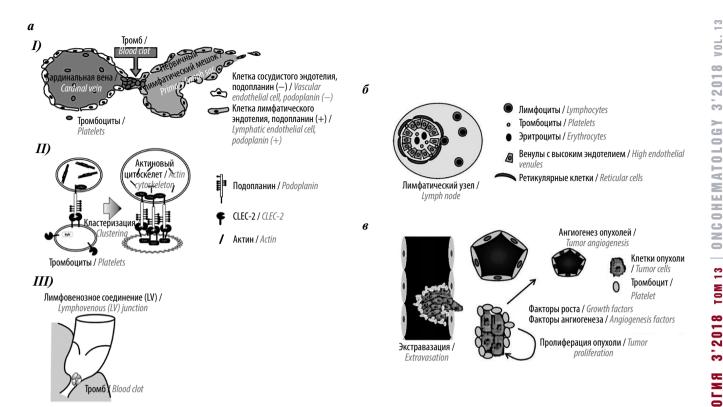


Рис. 2. Роли CLEC-2 в организме: a — участие CLEC-2 и подопланина в разделении кровеносных и лимфатических сосудов (I — разделение благодаря образованию тромбоцитарного агрегата в месте расхождения; II — разделение за счет факторов роста, содержащихся в гранулах тромбоцитов, выходящих при активации; III — активация клеток лимфатического эндотелия за счет кластеризации подопланина кластеризующимися молекулами CLEC-2); б — тромбоцитарный CLEC-2 и подопланин при поддержании целостности лимфатических узлов при иммунном ответе; в — участие тромбоцитарного CLEC-2 в процессе метастазирования подопланин-экспрессирующих опухолей (воспроизведено из [9]) Fig. 2. The role of CLEC-2: a - participation of CLEC-2 and podoplanin in the separation of blood and lymphatic vessels (I - separation after the formation of a platelet aggregate at the site of separation; II – separation caused by growth factors from platelet granules released after platelet activation; III – lymphatic endothelial cell activation caused by CLEC-2-mediated clustering of podoplanin); 6 – platelet CLEC-2 and podoplanin in maintaining the lymph nodes integrity in the immune response; e — platelet CLEC-2 in metastasis of podoplanin-expressing tumors (a reproduction from [9])

2) разделение за счет факторов роста, содержащихся в гранулах тромбоцитов, выходящих при активации (рис. 2*a*, II);

3) активация клеток лимфатического эндотелия за счет кластеризации подопланина кластеризующимися молекулами CLEC-2 (рис. 2*a*, III) [9].

Другая важная роль тромбоцитарного рецептора CLEC-2 — взаимодействие с подопланином в нейроэпителии. Связываясь с подопланином, тромбоциты активируются и секретируют гранулы, вовлекая перициты [9, 10]. Перициты продуцируют внеклеточный матрикс, способствуя формированию сосудистого русла, поддерживая его целостность и предотвращая кровотечения.

Известно, что во взрослом организме взаимодействие CLEC-2 тромбоцитов и подопланина ретикулярных клеток важно для предотвращения кровотечений в венулах с высоким эндотелием. Считается, что экспонируемый тромбоцитами сфингозин-1-фосфат участвует в процессе производства VEкадгерина, что способствует поддержанию целостности сосудов. Так, у мышей, дефицитных по CLEC-2, подопланину или сфингозин-1-фосфату, при стимуляции иммунного ответа происходит смешение

крови и лимфы в лимфатических узлах. Также предполагается, что активация тромбоцитов некоторым, в настоящее время неизвестным, лигандом CLEC-2 необходима для поддержания целостности сосудистых стенок капилляров при воспалительных реакциях, однако механизмы этого явления не были достаточно исследованы (рис. 26) [9].

Формирование окклюзивных тромбов у дефицитных по CLEC-2 мышей необратимо нарушено [11]. Более того, при одновременном ингибировании сигналов CLEC-2 и GP-VI FeCl₃-индуцированного тромбоза не происходит [11].

Также известно, что CLEC-2 тромбоцитов способствует регенерации печени после частичной гепатэктомии или хронических травм печени [9].

Наконец, показано, что в процессе заживления ран происходит временное увеличение экспрессии подопланина в кератиноцитах. Связывание тромбоцитов с подопланином через CLEC-2 вызывает рост экспрессии Е-кадгерина, приводя к ингибированию миграции базальных кератиноцитов. Таким образом, тромбоциты становятся основой для реэпителизации при первичном заживлении ран [9].

Патофизиологическое значение

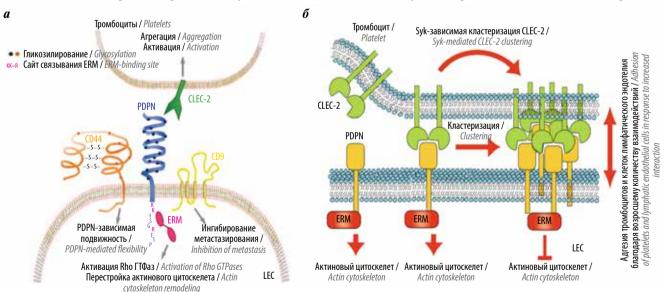
Особый интерес представляет исследование патогенеза взаимодействия CLEC-2 и подопланина в развитии опухолей. Важно подчеркнуть существование нескольких путей влияния. Клетки некоторых опухолей (например, меланом или глиом) экспонируют на своей поверхности подопланин, связывающий и активирующий тромбоциты. Во-первых, образовавшаяся тромбоцитарная «шуба» защищает опухоль от вызываемых потоком крови сдвиговых стрессов и NK-клеток [10, 12]. Таким образом, СLEC-2 тромбоцитов способствует метастазированию. Во-вторых, факторы роста, секретируемые тромбоцитами после активации CLEC-2, стимулируют ангиогенез и рост опухолей (см. рис. 2e) [9]. Достоверно показано, что нарушение взаимодействия CLEC-2 и подопланина способно полностью остановить метастазирование только гематогенных опухолей [12]. Так, меланомы мышей типа B16F10, культурировавшиеся в присутствии тромбоцитов, демонстрировали ускоренную пролиферацию в сравнении с клетками, культурированными в присутствии дефицитных по CLEC-2 тромбоцитов [13].

С другой стороны, дефицит CLEC-2 приводит к уплотнению сосудов в опухолях, а также ингибирует в них процесс тромбообразования, что способствует более эффективной доставке кислорода и питательных веществ к опухолям, косвенно способствуя их пролиферации. Дефицитные по CLEC-2 животные значительно лучше выживают при прививании клеток меланомы, что может быть также обусловлено подавлением тромбоэмболии легочной артерии, а также косвенным ингибированием воспалительных процессов и кахексии [14].

Также была продемонстрирована роль CLEC-2 в патологическом тромбообразовании у людей. Так,

тромбоз при попадании бактерий *Salmonella* в печень развивается при участии рецептора тромбоцитов CLEC-2. Бактерии активируют макрофаги через TLR-рецепторы, что способствует выходу на поверхность подопланина. Это приводит к активации и агрегации тромбоцитов [15].

Важным открытием стал тот факт, что антагонисты CLEC-2 и подопланина способны предотвращать тромбозы глубоких вен, вызванные частичной окклюзией сосудов [16]. У дефицитных по тромбоцитарному CLEC-2 мышей тромбоза глубоких вен не наблюдалось. Интересно, что антитела к CLEC-2/подопланину не полностью прекращали рост тромбов [16]. Поскольку подопланин не представлен на клетках сосудистого эндотелия, не ясно, какая молекула выступает в роли активатора CLEC-2.


Сигнальные аспекты активации тромбоцитов при участии рецептора CLEC-2

Эндогенные лиганды CLEC-2

На сегодняшний день достоверно известно о существовании единственного эндогенного активатора тромбоцитарного CLEC-2 — подопланина. Он экспрессируется на клетках лимфатического эндотелия, подоцитах и альвеолоцитах [17,18].

Связывание выставляемого клетками лимфатического эндотелия подопланина и CLEC-2 приводит к перестроению актинового цитоскелета в эндотелиальных клетках, уменьшению количества стресс-фибрилл и увеличению количества филоподий (рис. 3) [10].

Подопланин является специфическим маркером лимфатических сосудов. Поскольку развитие большинства опухолей происходит с активным лимфангио-

Рис. 3. Взаимодействие CLEC-2 и подопланина: а — события, происходящие при связывании подопланина и CLEC-2 (воспроизведено из [10]); б — Syk-зависимая кластеризация молекул CLEC-2 приводит к кластеризации подопланина и перестройке актинового цитоскелета клеток лимфатического эндотелия (воспроизведено из [19])

Fig. 3. The interaction of CLEC-2 and podoplanin: a — events occurring after binding of podoplanin and CLEC-2 (reproduced from [10]); δ — Syk dependent clustering of CLEC-2 molecules leads to clustering of podoplanin and rearrangement of the actin cytoskeleton of lymphatic endothelial cells (reproduced from [19])

генезом, увеличение количества подопланина может использоваться как диагностический маркер [10,12].

Также предполагается существование других эндогенных лигандов, однако на сегодняшний день таковых не найдено [13].

Экзогенные активаторы CLEC-2

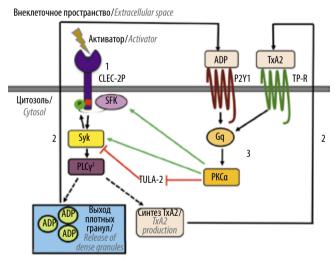
Известно, что тромбоциты также могут активироваться при связывании CLEC-2 с некоторыми экзогенными лигандами. Родоцитин (также известный как агрегин) — белок, добываемый из яда малайской гадюки *Calloselasma rhodostoma*. Способность тромбоцитов агрегировать в ответ на стимуляцию родоцитином была показана в 1998 г. [20]. Только в 2006 г. было открыто, что родоцитин активирует тромбоцит через CLEC-2 [21]. Тетрамер родоцитина связывает 2 молекулы CLEC-2 и может самостоятельно индуцировать мультимеризацию рецептора на поверхности тромбоцитов [22—24].

Фукоидан, добываемый из водорослей *Fucus vesiculosis*, также является активатором тромбоцитарного CLEC-2. Это было показано на дефицитных по тромбоцитарному CLEC-2 мышах [25].

Внутриклеточная сигнализация от рецептора CLEC-2

Цитоплазматический домен CLEC-2 при фосфорилировании по одному из остатков тирозина способен связывать малые тирозинкиназы семейств Src (Src family kinases, SFK) и Syk (Spleen tyrosine kinase), что приводит к их частичной активации [26]. При первичной активации тромбоцитов через рецептор CLEC-2 важную роль играют липидные рафты — мембранные микродомены, обогащенные холестеролом. После связывания CLEC-2 с молекулами активатора происходит зависящая от тирозинкиназ кластеризация рецепторов в рафтах [19]. Молекулы рецепторов «застревают» в рафтах, и их высокая локальная концентрация приводит к усилению общего сигнала.

Существует 2 модели активации тромбоцитов через рецептор CLEC-2. Первая модель основывается на предположении, что только Syk-киназы могут фосфорилировать CLEC-2 [27]:


- 1) после активации CLEC-2 транслоцируется в липидные рафты [28, 29];
- 2) как только в зоне доступа киназ оказываются активированные молекулы рецепторов, изначально активные Syk киназы фосфорилируют CLEC-2 [26];
- 3) это приводит к полной активации Syk, которые, фосфорилируя ряд белков-адаптеров, активируют фосфолипазу С и таким образом запускают кальциевую сигнализацию.

Другая модель активации через рецептор CLEC-2 предполагает, что CLEC-2 фосфорилируют SFK [30, 31]. Данная модель подразумевает участие в процессе тирозинкиназы Брутона (Bruton's tyrosine kinase, Btk), однако конкретный механизм процесса не ясен [31, 32].

СLEС-2-индуцированная сигнализация в тромбоцитах зависит от вторичных медиаторов активации — АДФ и TxA_2 [28]. При стимуляции тромбоцитов агонистами CLEС-2 происходит выход плотных гранул, содержащих АДФ, а также активация циклооксигеназы COX-1 и образование TxA_2 из арахидоновой кислоты [30]. Схема сигнальных событий в тромбоцитах при активации CLEС-2 приведена на рис. 4.

CLEC-2 как мишень для фармакологического воздействия

Подходы к использованию CLEC-2 или подопланина в качестве мишеней для лекарств только начинают развиваться [9, 10, 12]. Перспективным представляется использование антител к подопланину/CLEC-2 для остановки метастазирования. Поскольку человеческий подопланин связывается с CLEC-2 посредством PLAG3 и PLAG4 (Platelet Agregation Stimulated Domain) доменов, в качестве мишени обычно выбирают один из них. Существует ряд моноклональных антител, связывающихся с PLAG3/PLAG4 доменами подопланина и предотвращающих активацию и агрегацию тромбоцитов — NZ-1, P2-0, MS-1, PG4D2/PG4D2 [12]. Антитела к подопланину оказались эффективными при предотвращении развития метастазов меланом у мышей. Применимость данных антител еще не была изучена в клинических исследованиях.

Рис. 4. Схема сигнальных событий в тромбоцитах при активации CLEC-2: 1-CLEC-2 связывается с молекулой активатора и кластеризуется. Это приводит к активации тирозинкиназ Syk и SFK, которые активируют $PLC\gamma2$; 2- активация $PLC\gamma2$ запускает кальциевую сигнализацию и приводит к экзоцитозу плотных гранул, содержащих $AJ\Phi$, а также к синтезу тромбоксана A2; 3- вторичная сигнализация происходит через ассоцированные с G-белками рецепторы и через протешнкиназу C усиливает первичный сигнал (воспроизведено из [30]) Fig. 4. Signal events in platelets when CLEC-2 is activated: 1-CLEC-2 binds to the activator molecule and is clustered. This leads to activation of Syk and SFK tyrosine kinases, which activate $PLC\gamma2$; 2- activation of $PLC\gamma2$ triggers calcium signaling and leads to exocytosis of dense granules containing ADP, as well as to the thromboxane A2 synthesis; 3- secondary signaling occurs through G-protein associated receptors and through protein kinase C enhances primary signal (adapted from [30])

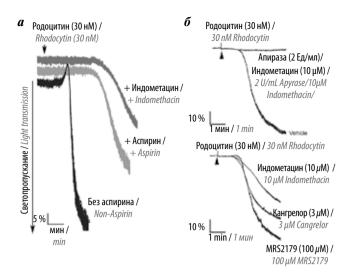
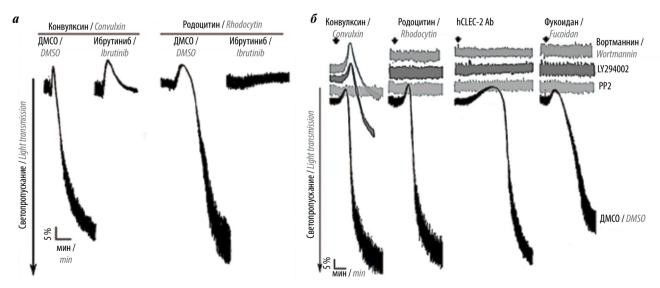


Рис. 5. Агрегация тромбоцитов в ответ на родоцитин после инкубации с аспирином и индометацином (ингибиторы COX-1, приводящие к отсутствию вторичной активации тромбоксаном A2) была значительно нарушена (а) [30]; агрегация тромбоцитов при ингибировании как синтеза тромбоксана A2 (индометацин), так и АДФ-индуцированной сигнализации (апираза, кангрелор, MRS2179) значительно нарушена (б) [28]

Fig. 5. Platelet aggregation in response to rhodocytin after incubation with aspirin and indomethacin (COX-1 inhibitors, leading to no secondary activation of thromboxane A2) was significantly impaired (a) [30]; platelet aggregation when inhibiting both the thromboxane A2 synthesis (indomethacin) and ADP induced signaling (apyrase, kangrelor, MRS2179) is significantly impaired (6) [28]


Одним из возможных ингибиторов активации тромбоцитов через CLEC-2 может быть аспирин, при использовании которого происходит ингибирование циклооксигеназы COX-1 и пути активации

тромбоцитов через синтез TxA_2 [30]. Таким образом, связанная с тромбоксаном вторичная активация тромбоцитов при контакте с подопланинэкспрессирующими клетками опухолей становится менее выраженной. На рис. 5a приведены результаты по агрегометрии тромбоцитов после активации родоцитином — аспирин и индометацин заметно ослабили агрегацию тромбоцитов.

Притом что описано множество антител к подопланину, сам рецептор CLEC-2 редко рассматривают в качестве мишени [9]. Описано низкомолекулярное соединение 2СР, связывающее CLEC-2 напрямую, которое предотвращает связывание с подопланином и другими агонистами CLEC-2. 2СР оказался эффективным в комбинации с цитостатиком цисплатином при исследовании на мышиной модели метастазирования. Также была показана эффективность антитела 2A2B10 при исследовании на мышах с меланомой [10, 12].

Ингибирование вторичной активации тромбоцитов также может быть выполнено посредством блокирования сигнализации, вызываемой АДФ. На рис. 56 показано, что добавление апиразы (фермент, гидролизующий АТФ и АДФ до АМФ) одновременно с индометацином полностью предотвратило активацию тромбоцитов. Другими перспективными соединениями для ингибирования вторичной сигнализации после CLEC-2-индуцированной активации тромбоцитов являются клопидогрел, тикагрелор, тиклопидин и их аналоги [28, 30, 33] (см. рис. 56).

Среди ингибиторов компонентов сигнального каскада CLEC-2 можно выделить ибрутиниб, основной мишенью которого является тирозинкиназа Брутона (Btk) [31, 34] (рис. 6*a*). Несмотря на то что роль

Рис. 6. При добавлении ибрутиниба (ингибитор Btk, применяемый при терапии) нарушается агрегация тромбоцитов при активации GP-VI (конвульксин), тогда как при активации CLEC-2 (родоцитин) нарушается и активация, и агрегация (а). Аналогичные результаты были получены при ингибировании PI3K киназы вортманнином, LY294002 (пан-PI3K ингибиторы), в то время как ингибирование активности SFK (PP2) нарушило активацию и для CLEC-2, и для GP-VI (б) (воспроизведено из [31])

Fig. 6. a — with the addition of ibrothinib (Btk inhibitor used in therapy), platelet aggregation is impaired when GP-VI activated (convulxin), whereas CLEC-2 activation (rhodocytin) disrupts both activation and aggregation. Similar results were obtained by inhibition of PI3K kinase by wortmannin, LY294002 (pan-PI3K inhibitors), while inhibition of SFK (PP2) activity disrupted activation for both CLEC-2 and GP-VI (6) (a reproduction from [31])

Вtk в сигнальном каскаде CLEC-2 не уточнена, показано, что ибрутиниб эффективно блокирует CLEC-2индуцированную активацию тромбоцитов [31]. Исследования влияния ибрутиниба на метастазирование опухолей, экспрессирующих подопланин, а также на развитие тромбозов глубоких вен или сепсис не проводились. Другой целью в сигнальном каскаде CLEC-2 может быть фосфоинозитид-3-киназа (PI3K). Показано, что добавление ингибиторов активности данной киназы вортманнина и LY294002 способно полностью предотвратить активацию тромбоцитов агонистами CLEC-2. Аналогичные результаты были получены при ингибировании SFK киназ с помощью ингибитора РР2 [31] (рис. 6б). Однако использовать ингибиторы PI3K и SFK в клинических условиях невозможно из-за высокой неселективности их воздействия.

Заключение

Притом что изучение значения рецептора CLEC-2 продолжается, уже сейчас становится очевидна его

перспективная мишень для антитромбоцитарной терапии. CLEC-2 вовлечен в такие физиологические процессы, как разделение кровеносной и лимфатической систем, поддержание целостности микрососудов при воспалительных процессах и лимфангиогенез. Также CLEC-2 и его лиганд подопланин являются активными участниками метастазирования, патологического лимфангиогенеза при росте опухолей и тромбозов глубоких вен и сепсиса.

В качестве ингибиторов активации тромбоцитов через CLEC-2 также могут выступать антагонисты рецепторов к АДФ (кангрелор, клопидогрел, тикагрелор, тиклопидин и др.) и ингибиторы циклооксигеназы COX-1 (аспирин), производящей синтез тромбоксана A2. Перспективным является применение ингибитора Btk ибрутиниба.

Поскольку особенности молекулярной сигнализации, индуцируемой CLEC-2 в тромбоцитах, продолжают уточняться, появляются новые мишени для антитромбоцитарной терапии с участием тромбоцитарного рецептора CLEC-2.

ЛИТЕРАТУРА / REFERENCES

- Камкин А., Каменский А. Фундаментальная и клиническая физиология.
 М.: Академия, 2004. [Kamkin A., Kamenskiy A. Fundamental and Clinical Physiology. Moscow: Akademia, 2004 (In Russ.)].
- Canobbio I., Balduini C., Torti M. Signalling through the platelet glycoprotein Ib-V–IX complex. Cell Signal 2004;16(12):1329–44.
 DOI: 10.1016/j.cellsig.2004.05.008.
 PMID: 15381249.
- 3. Payrastre B., Missy K., Trumel C. et al. The integrin alpha IIb/beta3 in human platelet signal transduction. Biochem Pharmacol 2000;60(8):1069–74. DOI: 10.1016/S0006-2952(00)00417-2. PMID: 11007943.
- Coxon C.H., Geer M.J., Senis Y.A. ITIM receptors: More than just inhibitors of platelet activation. Blood 2017;129(26):3407–18. DOI: 10.1182/blood-2016-12-720185. PMID: 28465343.
- Du X. Self-control of platelets: a new ITIM story. Blood 2014;124(15):2322–3.
 DOI: 10.1182/blood-2014-08-593830.
 PMID: 25301334.
- Watson S.P., Asazuma N., Atkinson B. et al. The Role of ITAM- and ITIM-coupled Receptors in Platelet Activation by Collagen. Thromb Haemost 2001;86(1):276–88. PMID: 11487016.
- Colonna M., Samaridis J., Angman L. Molecular characterization of two novel
 C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000;30(2):697–704.

 DOI: 10.1002/1521-4141(200002)

- 30:2<697::AID-IMMU697>3.0.CO;2-M. PMID: 10671229.
- 8. Mourão-Sá D., Robinson M.J., Zelenay S. et al. CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. Eur J Immunol 2011;41(10):3040–53. DOI: 10.1002/eji.201141641. PMID: 21728173.
- Suzuki-Inoue K., Osada M., Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017;15(2):219–29. DOI: 10.1111/ jth.13590. PMID: 27960039.
- Astarita J.L., Acton S.E., Turley S.J. Podoplanin: Emerging functions in development, the immune system, and cancer. Front Immunol 2012;3:283. DOI: 10.3389/ fimmu.2012.00283. PMID: 22988448.
- Haining E.J., Cherpokova D., Wolf K. et al. CLEC 2 contributes to hemostasis independently of classical hemITAM signaling in mice. Blood 2017;130(20):2224–8. DOI: 10.1182/blood-2017-03-771907. PMID: 28835437.
- Takemoto A., Miyata K., Fujita N. Platelet-activating factor podoplanin: from discovery to drug development. Cancer Metastasis Rev 2017;36(2):225–34.
 DOI: 10.1007/s10555-017-9672-2.
 PMID: 28674748.
- Suzuki-Inoue K., Osada M., Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017;15(2):219–29. DOI: 10.1111/ jth.13590. PMID: 27960039.

- Shirai T., Inoue O., Tamura S. et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J Thromb Haemost 2017;15(3):513–25. DOI: 10.1111/jth.13604. PMID: 28028907.
- Hitchcock J.R., Cook C.N., Bobat S. et al. Cunningham, Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015;125(12):4429–46. DOI: 10.1172/ JCI79070. PMID: 26571395.
- Payne H., Ponomaryov T., Watson S.P., Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017;129(14):2013–20. DOI: 10.1182/blood-2016-09-742999. PMID: 28104688.
- Kato Y., Fujita N., Kunita A. et al. Molecular Identification of Aggrus/T1α as a Platelet Aggregation-inducing Factor Expressed in Colorectal Tumors. J Biol Chem 2003;278(51):51599–605.
 DOI: 10.1074/jbc.M309935200.
 PMID: 14522983.
- 18. Kaneko M.K., Kato Y., Kitano T., Osawa M. Conservation of a platelet activating domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene 2006;378:52-7. DOI: 10.1016/j. gene.2006.04.023. PMID: 16766141.
- Pollitt A.Y., Poulter N.S., Gitz E. et al. Syk and src family kinases regulate c-type lectin receptor 2 (clec-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 2014;289(52):35695-710. DOI: 10.1074/ jbc.M114.584284. PMID: 25368330.

- 20. Shin Y., Morita T. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem Biophys Res Commun 1998; 245(3):741–5. DOI: 10.1006/bbrc.1998.8516. PMID: 9588185.
- Suzuki-Inoue K., Kato Y., Inoue O. et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007;282(36):25993–26001. DOI: 10.1074/jbc.M702327200. PMID: 17616532.
- Watson A.A., Eble J.A., O'Callaghan C.A. Crystal structure of rhodocytin, a ligand for the platelet-activating receptor CLEC-2. Protein Sci 2008;17(9):1611-6. DOI: 10.1110/ps.035568.108. PMID: 18583525.
- Nagae M., Morita-Matsumoto K., Kato M. et al. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014;22(12):1711–21. DOI: 10.1016/j.str.2014.09.009.
 PMID: 25458834.
- 24. Watson A.A., Christou C.M., James J.R. et al. The platelet receptor CLEC-2 is active as a dimer. Biochemistry 2009;48(46):10988–96. DOI: 10.1021/bi901427d. PMID: 19824697.

- 25. Manne B.K., Getz T.M., Hughes C.E. et al. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 2013;288(11):7717–26. DOI: 10.1074/jbc. M112.424473. PMID: 23341451.
- Hughes C.E., Sinha U., Pandey A. et al.
 Critical role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem 2013;288(7):5127—35. DOI: 10.1074/jbc. M112.411462. PMID: 23264619.
- 27. Hughes C.E., Finney B.A., Koentgen F. et al. The N-terminal SH2 domain of Syk is required for (hem) ITAM, but not integrin, signaling in mouse platelets. Blood 2015;125(1):144–55. DOI: 10.1182/blood-2014-05-579375. PMID: 25352128.
- Pollitt A.Y., Grygielska B., Leblond B. et al. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood 2010;115914):2938–2946. DOI: 10.1182/ blood-2009-12-257212. PMID: 20154214.
- Hughes C.E., Pollitt A.Y., Mori J. et al. CLEC-2 activates Syk through dimerization. Blood 2010;115(14):2947–55.
 DOI: 10.1182/blood-2009-08-237834.
 PMID: 20154219.
- 30. Badolia R., Inamdar V., Manne B.K. et al. Gq pathway regulates proximal C-type

- lectin-like receptor-2(CLEC-2) signaling in platelets. J Biol Chem 2017; 292(35):14516–31. DOI: 10.1074/jbc. M117.791012. PMID: 28705934.
- Manne B.K., Badolia R., Dangelmaier C. et al. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015;290(18):11557–68.
 DOI: 10.1074/jbc.M114.629527.
 PMID: 25767114.
- 32. Gibbins J.M., Briddon S., Shutes A. et al. The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor gamma chain and linker for activitor of T cells (LAT) in platelets stimulated by collagen and convulxin. J Biol Chem 1998;273(51):34437—43. DOI: 10.1074/jbc.273.51.34437. PMID: 9852111.
- Manne B.K., Badolia R., Dangelmaier C.A., Kunapuli S.P. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochem Pharmacol 2015;93(2):163–70. DOI: 10.1016/j. bcp.2014.11.005. PMID: 25462818.
- 34. Akinleye A., Chen Y., Mukhi N. et al. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 2013;6:59.
 DOI: 10.1186/1756-8722-6-59.
 PMID: 23958373.

Благодарность. Авторы выражают благодарность чл.-корр. РАН Фазоилу Инноятовичу Атауллаханову (ЦТП ФХФ РАН) за поддержку и вдохновение при выполнении данной работы.

Acknowledgement. We are very grateful to Fasoil Innoyatovich Ataullakhanov, member of the Russian Academy of Sciences (Center for Theoretical Problems of Physicochemical Pharmacology) for his valuable support and inspiration.

Вклад авторов

А.А. Мартьянов: обзор публикаций по теме статьи, дизайн и написание статьи;

В. Н. Канева: участие в написании статьи;

М.А. Пантелеев: окончательное одобрение рукописи;

А. Н. Свешникова: концепция и дизайн статьи, окончательное одобрение рукописи.

Authors' contributions

A.A. Martyanov: literature review, design and article writing;

V.N. Kaneva: article writing;

M.A. Panteleev: final approval of the article;

A. N. Sveshnikova: concept and design of the article, final approval of the article.

ORCID авторов / ORCID of authors

А.А. Мартьянов / А.А. Martyanov: https://orcid.org/0000-0003-0211-6325

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest. The authors declare no conflict of interest.

Финансирование. Работа выполнена при финансовой поддержке гранта Российского научного фонда № 17-74-20045.

Financing. The study was supported by Russian Science Foundation, grant N 17-74-20045.