Preview

Онкогематология

Расширенный поиск

Генетическая рестрикция гуморального иммунного ответа

https://doi.org/10.17650/1818-8346-2014-9-2-58-64

Аннотация

В обзоре приводятся сведения о путях инициации иммунного ответа при попадании в организм человека чужеродных агентов. Показано значение отдельных молекул главного комплекса гистосовместимости в запуске антителообразования после трансфузий компонентов крови, в процессе беременности, после трансплантации органов вследствие несовместимости антигенных структур донора и реципиента, матери и ребенка. Подробно описано значение строения белковых молекул антигенов тромбоцитов в распознавании их иммунокомпетентными клетками.

Об авторе

Л. Л. Головкина
ФГБУ ГНЦ Минздрава России, Москва
Россия


Список литературы

1. Nyholm S. V., Passeque E., Ludington W. B. et al. A candidate allorecognition receptor from a primitive

2. chordate. Immunity 2006;25:163–73.

3. Rinkevich B. Primitive immune systems: are you ways my ways? Immunology Rev 2004;198:25–35.

4. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974;248:701–2.

5. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitized T lymphocytes in lymphocytic choriomeningitis. Nature 1974;251:547–8.

6. Doherty P. C., Zinkernagel R. M. A biological role for the Major Histocompatibility Antigens. Lancet 1975;1:1406–9.

7. Semple J. W. Processed platelet HPA1a peptides au naturel. Blood 2009;114(9):1724–5.

8. Тананов А. Т. Значение системы HLA в оценке степени риска возникновения и прогноза заболеваний. Дис. … канд. мед. наук. М., 1982. 275 с.

9. Тананов А. Т., Орлов-Морозов А. В. Система HLA-антигенов и болезни. Обзорная информация «Медицина и здравоохранение», серия «Терапия». М., 1982. 75 с.

10. Ярилин А. А. Основы иммунологии. М.: Медицина, 1999. С. 362–364.

11. Бутина Е. В. Значение иммунологических факторов в развитии осложнений при трансфузиях компонентов крови у гематологических больных. Автореф. дис. … канд. мед. наук. СПб., 2001. С. 27.

12. Murao M., Viana M. B. Risk factors for alloimmunization by patients with sickle cell disease. Braz J Med Biol Res 2005;38(5):675–82.

13. Bauer M. P., Wiersum-Osselton J., Schipperus M. et al. Clinical predictors of alloimmunization after red blood cell transfusion. Transfusion 2007;47:2066–71.

14. Golovkina L. L., Atroshchenko G. V.,Krasnikova N. A. et al. Range of hematological disorders on the

15. alloimmunization frequencies to HLA and HPA in Russian multitransfused patients. J Transfus Med 2012;5(2):83–4.

16. Seyfried H., Walewska I. Analysis of immune response to red blood cell antigens in multitransfused patients with different diseases. Mater Med Pol 1990;22:21–5.

17. Stiegler G., Speer W., Lobler C. et al. Red cell antibodies in frequently transfused patients with myelodisplastic syndrome. Ann Hematol 2001;80(6):330–3.

18. Singer S. T., Wu V., Mignacca R. et al. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patient of predominantly Asian descent. Blood 2000;96:3369–73.

19. Aygun B., Padmanabhan S., Paley C., Chandrasekaran V. Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion 2002;42(Issue 1):37–43.

20. Garratty G. Autoantibodies induced by blood transfusion. Transfusion 2004;44(1):5–9.

21. Young P. P., Uzieblo A., Trulock E. et al. Autoantibody formation after alloimmunization: are blood transfusions a risk factor for autoimmune hemolytic anemia? Transfusion 2004;44(1):67–72.

22. Buetens O., Shirey R. S., Goble-Lee M. et al. Prevalence of HLA antibodies in transfused patients with and without red cell antibodies. Transfusion 2006;46(5): 754–6.

23. Hendrickson J. E., Desmarets M., Deshpande S. et al. Recipient inflammation affects the frequency and magnitude of immunization to transfused red blood cells. Transfusion 2006;46(9):1526–36.

24. Hendrickson J. E., Chadwick T. E., Roback J. D. et al. Inflammation enhances consumption and presentation of transfused RBC antigen by dendritic cells. Blood 2007;110(7):2736–43.

25. Головкина Л. Л., Стремоухова А. Г., Кутьина Р. М. и др. Появление полиспецифических антитромбоцитарных антител у больного с септическим осложнением. Пробл гематологии и переливания крови 2001;3:49.

26. Reviron D., Dettori I., Ferrera V. et al. HLA-DRB1 alleles and Jk (a) immunization. Transfusion 2005;45:956–9.

27. Noizat-Pirenne F., Tournamille C., Bierling P. et al. Relative immunogenicity of Fya and K antigens in a Caucasian population, based on HLA class II restriction analysis. Transfusion 2006;46:1328–33.

28. Alarif L., Castro O., Ofosu M. et al. HLA-B35 is associated with red cell alloimmunization in sickle cell disease. Clin Immunol Immunopathol 1986;38:178–83.

29. Toor A. A., Choo S. Y., Little J. A. Bleeding risk and platelet transfusion refractoriness in patients with acute myelogenous leukemia who undergo autologous stem cell transplantation. Bone Marrow Transplant 2000;26:315–20.

30. Verhagen O. J.H.M., Della Valle L., Dohmen S. et al. HLA-DRB1*15 is not strongly linked to RHD immunization risk, but associated with high anti-D titers after hyperimmunization. Vox Sang 2013;105(Suppl. 1):235.

31. Raos M., Unec R., Gojceta K. et al. The association of HLA System polymorphism with the development of clinically significant red blood cell antibodies. Vox Sang 2013;105(Suppl. 1):236.

32. Schonewille H., Doxiadis I. N., Levering W. H.B. et al. HLA-DRB1 associations in individuals with single nd multiple red blood cell antibodies. Vox Sang 2013;105(Suppl. 1):236.

33. Brown C. J., Navarrete C. V. Clinical relevance of the HLA system in blood transfusion. Vox Sang 2011;

34. (2):93–105.

35. Головкина Л. Л. Антигены тромбоцитов и их значение в медицине (обзор литературы). Гематол

36. и трансфузиол 2010;4:24–31.

37. Newman P. J., Derbes R. S., Aster R. H. The human alloantigens, PlA1 and PlA2, are associated with a leucine33 /proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J Clin Invest 1989;83:1778.

38. Bowditch R. D., Tani P. H., Halloran C. E. et al. Localization of a PlA1 epitope to the amino terminal 66 residues of platelet glycoprotein IIIa. Blood 1992;79(3):559–62.

39. Honda S., Honda Y., Bauer B. et al. The impact of three-dimensional structure on the expression of PlA alloantigen on human integrin β3. Blood 1995;86(1):234–42.

40. Wu S., Maslanska K., Gorski J. An integrin polymorphism that defines reactivity with alloantibodies generates an anchor for MHC class II peptide binding: a model for unidirectional alloimmune responses.

41. A model for unidirectional alloimmune responses. J Immunology 1997;158(7):3221–6.

42. Hammer J., Valsasnini P., Tolba K. et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 1993;74:197.

43. Maslanka K., Yassai M., Gorski J. Molecular identification of T cells that respond in a primary bulk culture to a peptide derived from a platelet glycoprotein implicated in neonatal alloimmune thrombocytopenia. J Clin Invest 1996;98:1802.

44. De Magistris M. T., Alexander M., Coggeshall M. et al. Analog Ag / MHC complex act as antagonists of the T cell receptor. Cell 1992;68:625–34.

45. Головкина Л. Л., Кутьина Р. М., Красникова Н. А. и др. Генетическая предрасположенность к антителообразованию у больных заболеваниями системы крови при компонентной терапии

46. тромбоцитами. Новое в гематол и трансфузиол. Киев, Ивано-Франковск, 2008. Вып. 8. С. 104–112.

47. Golovkinа L. L., Atroshchenko G. V., Pushkina T. D. The restriction HLA-DR, -DQ molecules in high platelet transfused patients with hematological disorders. Vox Sang 2011;101 supplement 1 (Abstracts of

48. the 21st Regional Congress of the ISBT, Lisbon, Portugal). Poster 663.

49. L’Abbe D., Tremblay L., Filion M. et al. Alloimmunization to platelet antigen HPA-1a (PlA1) is strongly associated with both HLA-DRB3*0101 and HLADQB1* 0201. Hum Immunol 1992;34(2):107–14.

50. Semana G., Zazoun T., Alizadeh M. et al. Genetic susceptibility and anti-human platelet antigen 5b alloimmunization role of HLA class II and TAP genes. Human Immunol 1996;46(2):114–9.

51. Westman P., Hashemi-Tavoularis S., Blanchette V. et al. Maternal DRB1*1501, DQA1*0102, DQB1*0602 haplotype in fetomaternal alloimmunization against human platelet alloantigen HPA-6b (GPIIIa-Gln489). Tissue Antigens 1997;50(2):113–8.

52. Blanchette V. S., Johnson J., Rand M. The management of alloimmune neonatal thrombocytopenia. Baillieres Best Pract Res Clin Haematol 2000;13:365–90.

53. Ohto H., Miura S., Ariga H. et al. The natural history of maternal immunization against fetal platelet alloantigen. Transfus Med 2004;14:399–408.

54. Rayment R., Kooij T. W., Zhang W. et al. Evidence for the specificity for platelet HPA- 1a alloepitope and the presenting HLA-DR52a of diverse antigen-specific helper T cell clones from alloimmunized mothers. J Immunol 2009;183:677–86.

55. Sarab G. A., Moss M., Barker R. N., Urbaniak S. J. Naturally processed peptides spanning the HPA-1a polymorphism are efficiently generated and displayed from platelet glycoprotein by HLADRB3* 0101‑positive antigen-presenting cells. Blood 2009;114(9):1954–7.

56. Ahlen M. T., Husebekk A., Killie M. K. et al. T cell responses associated with neonatal alloimmune thrombocytopenia: Isolation of HPA-1a-specific, HLADRB3* 0101‑restricted CD4+ T cells. Blood 2009;113(16):3838–44.

57. Sukati H., Bessos H., Barker R. N., Urbaniak S. J. Characterization of the alloreactive helper T-cell response to the platelet membrane glycoprotein IIIa (integrin-β3) in human platelet antigen-1a alloimmunized human platelet antigen-1b1b women. Transfusion 2005;45(7):1165–77.

58. Jackson D. J., Murphy M. F., Soothill P. W. et al. Reactivity of T cells from women with antibodies to the human platelet antigen (HPA)-1a to peptides encompassing the HPA-1 polymorphism. Clin Exp Immunol 2005;142(1):92–102.

59. Kaplan C., Porcelijn L., Vanlieferinghen P. et al. Anti-HPA-9bw (Maxa) fetomaternal alloimmunization, a clinically severe neonatal thrombocytopenia: difficulties in diagnosis and therapy and report on eight families. Transfusion 2005; 45(11):1799–803.

60. Moncharmont P., Courvoisier S., Pagnier A. et al. Severe HPA-15b related neonatal alloimmune thrombocytopenia. Acta Paediatrica 2007;96:1701–6.

61. Fuller T. C., Fuller A. The humoral immune response against an HLA class I allodeterminant correlates with the HLA-DR phenotype of the responder. Transplantation 1999;68(2):173–82.

62. Heise E., Manning C., Thacker L. HLA phenotypes of ESRD patients are risk factors in the panel-reactive antibody (PRA) response. Clin Transplant 2001;15(Suppl 6):22–7.

63. Papassavas A. C., Barnardo M. C., Bunce M., Welsh K. I. Is there MHC Class II restriction of the response to MHC Class I in transplant patients? Transplantation 2002;73(4):642–51.

64. Dankers M. K., Roelen D. L., Nagelkerke N. J. et al. The HLA-DR phenotype of the responder is predictive of humoral response against HLA class I antigens. Human Immunol 2004; 65(1):13–9.


Рецензия

Для цитирования:


Головкина Л.Л. Генетическая рестрикция гуморального иммунного ответа. Онкогематология. 2014;9(2):58-64. https://doi.org/10.17650/1818-8346-2014-9-2-58-64

For citation:


Golovkina L.L. Genetic restriction of humoral immune response. Oncohematology. 2014;9(2):58-64. (In Russ.) https://doi.org/10.17650/1818-8346-2014-9-2-58-64

Просмотров: 8832


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)